An upper bound for the number of arithmetical structures on a graph

Christopher Keyes Emory University

December 5, 2020

Overview

Today I will

- Define and give examples of arithmetical structures
- Describe a construction which associates an arithmetical structure on a graph to another one on a smaller graph
- Present a new result (joint with Tomer Reiter)

Theorem (K., Reiter [KR20])

Let G be a connected, undirected graph on n vertices, with no loops but possible multiedges. Then the following is an upper bound for the number of arithmetical structures on G.

$$
\# A(G) \leq \frac{n!}{2} \cdot \# E(G)^{2^{n-2}-1} \cdot \# E(G)^{2^{n-1} \cdot \frac{1.538 \log (2)}{(n-1) \log (2)+\log (\log (\# E(G)))} .}
$$

- Refine for complete graphs and make connections with the Egyptian fraction problem (time permitting)

Setup

Let G be a connected, undirected graph with n vertices and edge set $E(G)$ (possibly multiedges!).

Assume the vertices come ordered v_{1}, \ldots, v_{n}.
Let $\delta_{i j}$ denote the number of edges between v_{i} and v_{j}. The adjacency matrix of G is $A=\left(\delta_{i j}\right)$.
Assume that G has no loops: $\delta_{i i}=0$ for all i.
Note: the assumptions that G is connected and has no loops aren't that bad to fix.

Arithmetical structures

An arithmetical structure on G is a pair of n-tuples $(\boldsymbol{r}, \boldsymbol{d})$ of natural numbers satisfying

$$
\begin{aligned}
& r_{1} d_{1}=r_{2} \delta_{12}+\cdots+r_{n} \delta_{1 n} \\
& \vdots \\
& r_{n} d_{n}=r_{1} \delta_{1 n}+\cdots+r_{n-1} \delta_{(n-1) n}
\end{aligned}
$$

and

$$
\operatorname{gcd}\left(r_{1}, \ldots, r_{n}\right)=1
$$

It is often convenient to write $D=\operatorname{diag}(\boldsymbol{d})$, in which case we have $(D-A) r=\mathbf{0}$.

Some examples

We can always set $r_{i}=1$ and $d_{i}=\operatorname{deg} v_{i}$ for all i. In this case, the matrix $D-A$ is known as the Laplacian.
Some more interesting examples (with only the \boldsymbol{r} values labeled):

Counting arithmetical structures

Let $A(G)$ denote the set of arithmetical structures on G.

Question

For a given graph G, how large is $\# A(G)$?

What do we know?

- Finiteness: $\# A(G)<\infty$, [Lor89]
- Paths: $\# A\left(P_{n}\right)=C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1},\left[\mathrm{BCC}^{+} 18\right]$
- Cycles: $\# A\left(C_{n}\right)=(2 n-1) C_{n-1}=\binom{2 n-1}{n-1},\left[\mathrm{BCC}^{+} 18\right]$
- Bidents, doubled edges: bounds and/or asymptotics, [GW19], [ABDL ${ }^{+} 20$]

Counting arithmetical structures

The graphs studied so far have lots of regularity.
What about a general graph? Can we count (or bound) $\# A(G)$ in terms of only n and $\# E(G)$?

> Theorem (K., Reiter $[\mathrm{KR20}])$
> $\# A(G) \leq \frac{n!}{2} \cdot \# E(G)^{2^{n-2}-1} \cdot \# E(G)^{2^{n-1} \cdot \frac{1.533 \log (2)}{(n-1) \log (2) \log (\log (\# E(G)))} .}$

Proof idea

Given an arithmetical structure ($\boldsymbol{r}, \boldsymbol{d}$) on G with n vertices, cook up $\left(\boldsymbol{r}^{\prime}, \boldsymbol{d}^{\prime}\right)$ on G^{\prime} with $n-1$ vertices.

Use induction to reduce to the case of a graph with two vertices.

Graphs with two vertices

Let G be a graph with $n=2$ vertices and m edges.
Let $\sigma_{0}(n)=\#\{$ positive divisors of $n\}$ denote the divisor function.

Lemma

$$
\# A(G)=\sigma_{0}\left(m^{2}\right)
$$

Proof.

An arith. struct. on G is a coprime pair $\left(r_{1}, r_{2}\right)$ such that $r_{1} \mid m r_{2}$ and symmetrically $r_{2} \mid m r_{1}$ (here the d_{i} are implicit). The map

$$
\left(r_{1}, r_{2}\right) \mapsto \frac{m r_{2}}{r_{1}}
$$

is a bijection from such pairs to divisors of m^{2}.

The construction by example

Start with an arithmetical structure $(\boldsymbol{r}, \boldsymbol{d})$ on G. We will remove vertex v_{1} and construct a graph G^{\prime} on the remaining vertices:
(1) Remove v_{1} and all incident edges.
(2) Replace remaining edges by d_{1} copies.
(3) For remaining distinct v_{i}, v_{j}, add $\delta_{1 i} \delta_{1 j}$ edges.
(9) Obtain \boldsymbol{r}^{\prime} by deleting r_{1} and scaling if necessary

Example

Vertices are labeled with r_{i} values.

1
1

$G=P_{2}$
G^{\prime}

The construction by example

The construction by example

The construction by example

This construction is a generalization of the smoothing process in $\left[B C C^{+} 18\right]$ and [GW19] for paths (with and without a doubled edge) and cycles.

When $d_{1}=1$, the construction is inverse to the blow up construction in [Lor89] and generalizes previous observations by [CV18] about the clique-star transform.

In particular, when $d_{1}=1$, the critical group is unchanged,

$$
K(G, \boldsymbol{r}) \simeq K\left(G^{\prime}, \boldsymbol{r}^{\prime}\right)
$$

Unanswered question

Can we say anything more generally about how this transformation affects the critical group?

Completing proof of main theorem

(1) Let v_{i} be the vertex with maximal r_{i} value.
(2) Let $G^{\prime}\left(i, d_{i}\right)$ denote the graph obtained by our construction for some value of d_{i}.
(3) Apply induction on the number of vertices, taking care to keep track of how the number of edges grows.
(1) For base case of $n=2$, use a monotonically increasing upper bound for σ_{0}, e.g. $\sigma_{0}(m) \leq m^{\frac{1.538 \log (2)}{\log \log (m)}}$ [Nic88].

Theorem (K., Reiter [KR20])

$\# A(G) \leq \frac{n!}{2} \cdot \# E(G)^{2^{n-2}-1} \cdot \# E(G)^{2^{n-1} \cdot \frac{1.538 \log (2)}{(n-1) \log (2)+\log (\log (\# E(G)))} .}$

Arithmetical structures on complete graphs

Let K_{n} denote the complete graph on n vertices.

Let $m K_{n}$ denote the graph on n vertices with m edges between each vertex pair.

Let $A_{\text {dec }}\left(m K_{n}\right)$ denote the subset of $A\left(m K_{n}\right)$ with decreasing r-values, $r_{1} \geq r_{2} \geq \cdots \geq r_{n}$.

Our construction associates an arith. struct. on $\left(m^{2}+d_{1} m\right) K_{n-1}$.
We can use this to compute all the arithmetical structures on $m K_{n}$ when m and n are small.

A comparison

n	m	$\# A_{\text {dec }}\left(m K_{n}\right)$	Our best bound
3	1	3	20.60
3	2	10	56.46
3	3	21	127.58
3	4	28	229.66
3	5	36	362.62
3	6	57	526.39
3	7	42	720.90
3	8	70	946.06
3	9	79	1201.76
3	10	96	1487.91
3	100	1106	142796.93
3	101	164	145584.07
4	1	14	688.99
4	2	108	23028.32
4	3	339	173664.01
4	4	694	717812.26
4	5	1104	2141953.95
4	6	1816	5209709.25
4	7	2021	11012969.52
4	8	3363	21019441.99
4	9	4053	37117341.07
4	10	5370	61657730.38
5	1	147	8567815.81

Connections to Egyptian fractions

Theorem

$A\left(m K_{n}\right)$ is in bijection with primitive $\left(x_{1}, \ldots, x_{n}\right)$ satisfying

$$
\frac{1}{m}=\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}
$$

Solutions to such equations are known as Egyptian fractions.
Corollary (Browning-Elsholtz [BE11], Elsholtz-Planitzer [EP20])
Let $n \geq 3, m \geq 1$, and fix $\epsilon \geq 0$. Then

$$
\begin{aligned}
& \# A_{d e c}\left(m K_{3}\right) \ll_{\epsilon} m^{\frac{3}{5}+\epsilon} \\
& \# A_{\text {dec }}\left(m K_{4}\right) \ll_{\epsilon} m^{\frac{28}{17}+\epsilon} \\
& \# A_{\text {dec }}\left(m K_{n}\right) \ll_{\epsilon}(n m)^{\epsilon}\left(n^{4 / 3} m^{2}\right)^{\frac{28}{17} 7^{n-5}}
\end{aligned}
$$

An asymptotic improvement but lacking explicit constants!

References I

Kassie Archer, Abigail C. Bishop, Alexander Diaz-Lopez, Luis D. García Puente, Darren Glass, and Joel Louwsma.
Arithmetical structures on bidents.
Discrete Math., 343(7):111850, 23, 2020.
Benjamin Braun, Hugo Corrales, Scott Corry, Luis David García Puente, Darren Glass, Nathan Kaplan, Jeremy L. Martin, Gregg Musiker, and Carlos E. Valencia.
Counting arithmetical structures on paths and cycles.
Discrete Math., 341(10):2949-2963, 2018.
T. D. Browning and C. Elsholtz.

The number of representations of rationals as a sum of unit fractions.
Illinois J. Math., 55(2):685-696 (2012), 2011.

Hugo Corrales and Carlos E. Valencia.
Arithmetical structures on graphs.
Linear Algebra Appl., 536:120-151, 2018.
Christian Elsholtz and Stefan Planitzer.
The number of solutions of the erdős-straus equation and sums of k unit fractions.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 150(3):1401-1427, 2020.
Darren Glass and Joshua Wagner.
Arithmetical Structures on Paths With a Doubled Edge.
arXiv e-prints, page arXiv:1903.01398, Mar 2019.
Christopher Keyes and Tomer Reiter.
Bounding the number of arithmetical structures on graphs, 2020.

References II

Dino J. Lorenzini.
Arithmetical graphs.
Math. Ann., 285(3):481-501, 1989.
Jean-Louis Nicolas.
On highly composite numbers.
In Ramanujan revisited (Urbana-Champaign, III., 1987), pages 215-244. Academic Press, Boston, MA, 1988.

