Overview	Arithmetical structures	The key construction	Complete graphs	References
0	000000	00000	000	

An upper bound for the number of arithmetical structures on a graph

Christopher Keyes Emory University

December 5, 2020

Overview ●	Arithmetical structures	The key construction	Complete graphs	References
Overviev	v			

Today I will

- Define and give examples of arithmetical structures
- Describe a construction which associates an arithmetical structure on a graph to another one on a *smaller* graph
- Present a new result (joint with Tomer Reiter)

Theorem (K., Reiter [KR20])

Let G be a connected, undirected graph on n vertices, with no loops but possible multiedges. Then the following is an upper bound for the number of arithmetical structures on G.

$$\#A(G) \leq \frac{n!}{2} \cdot \#E(G)^{2^{n-2}-1} \cdot \#E(G)^{2^{n-1} \cdot \frac{1.538 \log(2)}{(n-1) \log(2) + \log(\log(\#E(G)))}}.$$

• Refine for complete graphs and make connections with the Egyptian fraction problem (time permitting)

Overview O	Arithmetical structures •00000	The key construction	Complete graphs	References
Setup				

Let G be a connected, undirected graph with n vertices and edge set E(G) (possibly multiedges!).

Assume the vertices come ordered v_1, \ldots, v_n .

Let δ_{ij} denote the number of edges between v_i and v_j . The **adjacency matrix** of G is $A = (\delta_{ij})$.

Assume that G has no loops: $\delta_{ii} = 0$ for all i.

Note: the assumptions that G is connected and has no loops aren't that bad to fix.

An arithmetical structure on G is a pair of *n*-tuples (r, d) of natural numbers satisfying

$$r_1 d_1 = r_2 \delta_{12} + \dots + r_n \delta_{1n}$$

$$\vdots$$

$$r_n d_n = r_1 \delta_{1n} + \dots + r_{n-1} \delta_{(n-1)n}$$

and

$$gcd(r_1,\ldots,r_n)=1.$$

It is often convenient to write $D = \text{diag}(\boldsymbol{d})$, in which case we have $(D - A)\boldsymbol{r} = \boldsymbol{0}$.

Overview O	Arithmetical structures	The key construction	Complete graphs	References
Some ex	kamples			

We can always set $r_i = 1$ and $d_i = \deg v_i$ for all *i*. In this case, the matrix D - A is known as the **Laplacian**.

Some more interesting examples (with only the *r* values labeled):

Overview O	Arithmetical structures	The key construction	Complete graphs	References
Counting	g arithmetical st	ructures		

Let A(G) denote the set of arithmetical structures on G.

Question

For a given graph G, how large is #A(G)?

What do we know?

- Finiteness: $#A(G) < \infty$, [Lor89]
- Paths: $#A(P_n) = C_{n-1} = \frac{1}{n} {\binom{2n-2}{n-1}}$, [BCC+18]
- Cycles: $#A(C_n) = (2n-1)C_{n-1} = \binom{2n-1}{n-1}$, [BCC⁺18]
- Bidents, doubled edges: bounds and/or asymptotics, [GW19], [ABDL⁺20]

Overview O	Arithmetical structures	The key construction	Complete graphs 000	References
Counting	; arithmetical st	ructures		

The graphs studied so far have lots of regularity.

What about a general graph? Can we count (or bound) #A(G) in terms of **only** *n* and #E(G)?

Theorem (K., Reiter [KR20]) # $A(G) \le \frac{n!}{2} \cdot \#E(G)^{2^{n-2}-1} \cdot \#E(G)^{2^{n-1} \cdot \frac{1.538 \log(2)}{(n-1) \log(2) + \log(\log(\#E(G)))}}.$

Proof idea

Given an arithmetical structure (\mathbf{r}, \mathbf{d}) on G with n vertices, cook up $(\mathbf{r}', \mathbf{d}')$ on G' with n - 1 vertices.

Use induction to reduce to the case of a graph with two vertices.

Overview O	Arithmetical structures 00000●	The key construction	Complete graphs 000	References
Graphs	with two vertices	5		

Let G be a graph with n = 2 vertices and m edges.

Let $\sigma_0(n) = \#\{\text{positive divisors of } n\}$ denote the divisor function.

Lemma

 $\#A(G)=\sigma_0(m^2).$

Proof.

An arith. struct. on G is a coprime pair (r_1, r_2) such that $r_1 | mr_2$ and symmetrically $r_2 | mr_1$ (here the d_i are implicit). The map

$$(r_1, r_2) \mapsto \frac{mr_2}{r_1}$$

is a bijection from such pairs to divisors of m^2 .

Start with an arithmetical structure (\mathbf{r}, \mathbf{d}) on G. We will remove vertex v_1 and construct a graph G' on the remaining vertices:

- **Q** Remove v_1 and all incident edges.
- **2** Replace remaining edges by d_1 copies.
- For remaining distinct v_i , v_j , add $\delta_{1i}\delta_{1j}$ edges.
- Obtain \mathbf{r}' by deleting r_1 and scaling if necessary

Overview O	Arithmetical structures	The key construction 0●000	Complete graphs	References
- T 1				

The construction by example

Overview O	Arithmetical structures	The key construction	Complete graphs	References
T 1				

Overview O	Arithmetical structures	The key construction 000●0	Complete graphs	References
The cons	struction by exa	ample		

This construction is a generalization of the **smoothing** process in $[BCC^+18]$ and [GW19] for paths (with and without a doubled edge) and cycles.

When $d_1 = 1$, the construction is inverse to the **blow up** construction in [Lor89] and generalizes previous observations by [CV18] about the **clique-star transform**.

In particular, when $d_1 = 1$, the critical group is unchanged,

 $K(G, \mathbf{r}) \simeq K(G', \mathbf{r}').$

Unanswered question

Can we say anything more generally about how this transformation affects the critical group?

Overview O	Arithmetical structures	The key construction 0000●	Complete graphs	References
Comple	ting proof of m	ain theorem		

- **1** Let v_i be the vertex with maximal r_i value.
- Let G'(i, d_i) denote the graph obtained by our construction for some value of d_i.
- Apply induction on the number of vertices, taking care to keep track of how the number of edges grows.
- For base case of n = 2, use a monotonically increasing upper bound for σ_0 , e.g. $\sigma_0(m) \le m^{\frac{1.538 \log(2)}{\log \log(m)}}$ [Nic88].

Theorem (K., Reiter [KR20])

 $\#A(G) \leq \frac{n!}{2} \cdot \#E(G)^{2^{n-2}-1} \cdot \#E(G)^{2^{n-1} \cdot \frac{1.538 \log(2)}{(n-1) \log(2) + \log(\log(\#E(G)))}}.$

Overview O	Arithmetical structures	The key construction	Complete graphs ●○○	References

Arithmetical structures on complete graphs

Let K_n denote the **complete graph on** *n* **vertices**.

Let mK_n denote the graph on *n* vertices with *m* edges between each vertex pair.

Let $A_{dec}(mK_n)$ denote the subset of $A(mK_n)$ with decreasing *r*-values, $r_1 \ge r_2 \ge \cdots \ge r_n$.

Our construction associates an arith. struct. on $(m^2 + d_1m)K_{n-1}$.

We can use this to compute all the arithmetical structures on mK_n when m and n are small.

Overview O	Arithmetical structures	The key construction	Complete graphs ○●○	References
٨				

•		
Λ	com	naricon
	COILI	parison

n	m	$#A_{dec}(mK_n)$	Our best bound
3	1	3	20.60
3	2	10	56.46
3	3	21	127.58
3	4	28	229.66
3	5	36	362.62
3	6	57	526.39
3	7	42	720.90
3	8	70	946.06
3	9	79	1201.76
3	10	96	1487.91
3	100	1106	142796.93
3	101	164	145584.07
4	1	14	688.99
4	2	108	23028.32
4	3	339	173664.01
4	4	694	717812.26
4	5	1104	2141953.95
4	6	1816	5209709.25
4	7	2021	11012969.52
4	8	3363	21019441.99
4	9	4053	37117341.07
4	10	5370	61657730.38
5	1	147	8567815.81

Overview O	Arithmetical structures	The key construction	Complete graphs ○○●	References
~		C		

Connections to Egyptian fractions

Theorem

 $A(mK_n)$ is in bijection with primitive (x_1, \ldots, x_n) satisfying

$$\frac{1}{m} = \frac{1}{x_1} + \dots + \frac{1}{x_n}$$

Solutions to such equations are known as Egyptian fractions.

Corollary (Browning–Elsholtz [BE11], Elsholtz–Planitzer [EP20]) Let $n \ge 3$, $m \ge 1$, and fix $\epsilon \ge 0$. Then

$$\begin{split} & \#A_{dec}(mK_3) \ll_{\epsilon} m^{\frac{5}{5}+\epsilon} \\ & \#A_{dec}(mK_4) \ll_{\epsilon} m^{\frac{28}{17}+\epsilon} \\ & \#A_{dec}(mK_n) \ll_{\epsilon} (nm)^{\epsilon} \left(n^{4/3}m^2\right)^{\frac{28}{17}2^{n-5}} \end{split}$$

An asymptotic improvement but lacking explicit constants!

Overview O	Arithmetical structures	The key construction	Complete graphs	References
Referen	ces l			

Kassie Archer, Abigail C. Bishop, Alexander Diaz-Lopez, Luis D. García Puente, Darren Glass, and Joel

Louwsma. Arithmetical structures on bidents. Discrete Math., 343(7):111850, 23, 2020.

Benjamin Braun, Hugo Corrales, Scott Corry, Luis David García Puente, Darren Glass, Nathan Kaplan, Jeremy L. Martin, Gregg Musiker, and Carlos E. Valencia. Counting arithmetical structures on paths and cycles. *Discrete Math.*, 341(10):2949–2963, 2018.

T. D. Browning and C. Elsholtz.

The number of representations of rationals as a sum of unit fractions. *Illinois J. Math.*, 55(2):685–696 (2012), 2011.

Hugo Corrales and Carlos E. Valencia.

Arithmetical structures on graphs. Linear Algebra Appl., 536:120–151, 2018.

Christian Elsholtz and Stefan Planitzer.

The number of solutions of the erdős-straus equation and sums of k unit fractions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 150(3):1401–1427, 2020.

Darren Glass and Joshua Wagner.

Arithmetical Structures on Paths With a Doubled Edge. arXiv e-prints, page arXiv:1903.01398, Mar 2019.

Christopher Keyes and Tomer Reiter.

Bounding the number of arithmetical structures on graphs, 2020.

Overview O	Arithmetical structures	The key construction	Complete graphs	References
Referer	nces II			

Dino J. Lorenzini.

Arithmetical graphs. Math. Ann., 285(3):481–501, 1989.

Jean-Louis Nicolas.

On highly composite numbers.

In Ramanujan revisited (Urbana-Champaign, III., 1987), pages 215-244. Academic Press, Boston, MA, 1988.