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Overview

Today I will

Define and give examples of arithmetical structures

Describe a construction which associates an arithmetical
structure on a graph to another one on a smaller graph

Present a new result (joint with Tomer Reiter)

Theorem (K., Reiter [KR20])

Let G be a connected, undirected graph on n vertices, with no
loops but possible multiedges.Then the following is an upper
bound for the number of arithmetical structures on G .

#A(G ) ≤ n!

2
·#E (G )2n−2−1 ·#E (G )

2n−1· 1.538 log(2)
(n−1) log(2)+log(log(#E(G))) .

Refine for complete graphs and make connections with the
Egyptian fraction problem (time permitting)
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Setup

Let G be a connected, undirected graph with n vertices and edge
set E (G ) (possibly multiedges!).

Assume the vertices come ordered v1, . . . , vn.

Let δij denote the number of edges between vi and vj . The
adjacency matrix of G is A = (δij).

Assume that G has no loops: δii = 0 for all i .

Note: the assumptions that G is connected and has no loops
aren’t that bad to fix.
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Arithmetical structures

An arithmetical structure on G is a pair of n-tuples (r ,d ) of
natural numbers satisfying

r1d1 = r2δ12 + · · ·+ rnδ1n

...

rndn = r1δ1n + · · ·+ rn−1δ(n−1)n

and
gcd(r1, . . . , rn) = 1.

It is often convenient to write D = diag(d ), in which case we have
(D − A)r = 0.
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Some examples

We can always set ri = 1 and di = deg vi for all i . In this case, the
matrix D − A is known as the Laplacian.

Some more interesting examples (with only the r values labeled):
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Counting arithmetical structures

Let A(G ) denote the set of arithmetical structures on G .

Question

For a given graph G , how large is #A(G )?

What do we know?

Finiteness: #A(G ) <∞, [Lor89]

Paths: #A(Pn) = Cn−1 = 1
n

(2n−2
n−1

)
, [BCC+18]

Cycles: #A(Cn) = (2n − 1)Cn−1 =
(2n−1
n−1

)
, [BCC+18]

Bidents, doubled edges: bounds and/or asymptotics, [GW19],
[ABDL+20]
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Counting arithmetical structures

The graphs studied so far have lots of regularity.

What about a general graph? Can we count (or bound) #A(G ) in
terms of only n and #E (G )?

Theorem (K., Reiter [KR20])

#A(G ) ≤ n!
2 ·#E (G )2n−2−1 ·#E (G )

2n−1· 1.538 log(2)
(n−1) log(2)+log(log(#E(G))) .

Proof idea

Given an arithmetical structure (r ,d ) on G with n vertices, cook
up (r ′,d ′) on G ′ with n − 1 vertices.

Use induction to reduce to the case of a graph with two vertices.
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Graphs with two vertices

Let G be a graph with n = 2 vertices and m edges.

Let σ0(n) = #{positive divisors of n} denote the divisor function.

Lemma

#A(G ) = σ0(m2).

Proof.

An arith. struct. on G is a coprime pair (r1, r2) such that r1 | mr2
and symmetrically r2 | mr1 (here the di are implicit). The map

(r1, r2) 7→ mr2
r1

is a bijection from such pairs to divisors of m2.
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The construction by example

Start with an arithmetical structure (r ,d ) on G . We will remove
vertex v1 and construct a graph G ′ on the remaining vertices:

1 Remove v1 and all incident edges.

2 Replace remaining edges by d1 copies.

3 For remaining distinct vi , vj , add δ1iδ1j edges.

4 Obtain r ′ by deleting r1 and scaling if necessary

Example

Vertices are labeled with ri values.

v2

1
v1

2
v3

1

G = P2

1 1 1 1

G ′
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The construction by example
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The construction by example

3

1 2

6

3
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The construction by example

This construction is a generalization of the smoothing process in
[BCC+18] and [GW19] for paths (with and without a doubled
edge) and cycles.

When d1 = 1, the construction is inverse to the blow up
construction in [Lor89] and generalizes previous observations by
[CV18] about the clique-star transform.

In particular, when d1 = 1, the critical group is unchanged,

K (G , r) ' K (G ′, r ′).

Unanswered question

Can we say anything more generally about how this transformation
affects the critical group?
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Completing proof of main theorem

1 Let vi be the vertex with maximal ri value.

2 Let G ′(i , di ) denote the graph obtained by our construction
for some value of di .

3 Apply induction on the number of vertices, taking care to
keep track of how the number of edges grows.

4 For base case of n = 2, use a monotonically increasing upper

bound for σ0, e.g. σ0(m) ≤ m
1.538 log(2)
log log(m) [Nic88].

Theorem (K., Reiter [KR20])

#A(G ) ≤ n!
2 ·#E (G )2n−2−1 ·#E (G )

2n−1· 1.538 log(2)
(n−1) log(2)+log(log(#E(G))) .
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Arithmetical structures on complete graphs

Let Kn denote the complete graph on n vertices.

Let mKn denote the graph on n vertices with m edges between
each vertex pair.

Let Adec(mKn) denote the subset of A(mKn) with decreasing
r -values, r1 ≥ r2 ≥ · · · ≥ rn.

Our construction associates an arith. struct. on (m2 + d1m)Kn−1.

We can use this to compute all the arithmetical structures on mKn

when m and n are small.
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A comparison

n m #Adec(mKn) Our best bound
3 1 3 20.60
3 2 10 56.46
3 3 21 127.58
3 4 28 229.66
3 5 36 362.62
3 6 57 526.39
3 7 42 720.90
3 8 70 946.06
3 9 79 1201.76
3 10 96 1487.91
3 100 1106 142796.93
3 101 164 145584.07
4 1 14 688.99
4 2 108 23028.32
4 3 339 173664.01
4 4 694 717812.26
4 5 1104 2141953.95
4 6 1816 5209709.25
4 7 2021 11012969.52
4 8 3363 21019441.99
4 9 4053 37117341.07
4 10 5370 61657730.38
5 1 147 8567815.81
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Connections to Egyptian fractions

Theorem

A(mKn) is in bijection with primitive (x1, . . . , xn) satisfying

1

m
=

1

x1
+ · · ·+ 1

xn
.

Solutions to such equations are known as Egyptian fractions.

Corollary (Browning–Elsholtz [BE11], Elsholtz–Planitzer [EP20])

Let n ≥ 3, m ≥ 1, and fix ε ≥ 0. Then

#Adec(mK3)�ε m
3
5

+ε

#Adec(mK4)�ε m
28
17

+ε

#Adec(mKn)�ε (nm)ε
(
n4/3m2

) 28
17

2n−5

An asymptotic improvement but lacking explicit constants!
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