
LIST OF ALGEBRAIC GEOMETRY DEFINITIONS AND THEOREMS

CHRISTOPHER KEYES

Preface. This note contains a list of definitions used in algebraic geometry, compiled while the
author read Ravi Vakil’s notes, took courses at Emory University based on Hartshorne’s text, and
studied for an oral exam in algebraic geometry. The definitions as written here may differ slightly
from other common formulations and are listed in alphabetical order for ease of access while reading,
much like an index. In an effort to make the interdependence of these many definitions more easily
decipherable, cross-referencing links are often (but not everywhere) included. All rings are assumed
to be commutative with 1.

The following section contains several results, theorems, and constructions which were deemed
important by someone who has no authority, and is not complete in any sense. It is also organized
alphabetically. Sometimes a proof or a proof sketch is given, sometimes not.

The final section contains a list of practice qualifying exam questions. This grew from a list
of questions previously asked, supplied by Prof. David Zureick-Brown of Emory University. It has
subsequently been modified and expanded somewhat.

These notes may be incomplete and may contain errors; please consider finding such errors a
productive exercise. If you are reading this as you study for your own qualifying exam, study well
and good luck!

1. Definitions

abelian category: An abelian category is a category A such that
(i) for all objects A,B, Hom(A,B) is an abelian group,

(ii) composition distributes: f ◦ (g+h) = (f ◦ g) + (f ◦h) and (f + g) ◦h = (f ◦h) + (g ◦h),
(iii) biproducts A⊕B exist (hence so do finite sums),
(iv) for every f : A→ B, ker f and coker f exist,
(v) every monomorphism is the kernel of its cokernel, and every epimorphism is the cokernel

of its kernel (the first isomorphism theorem),
(vi) every morphism f : A→ B can be factored as f = g ◦h where h is an epimorphism and

g is a monomorphism (surjecting onto the image, which injects into the target).

acyclic: Let A be an abelian category with enough injectives and F : A → B a left exact additive
functor, i.e. precisely the conditions necessary for the right derived functors RiF to exist.
An object A ∈ A is F -acyclic (often just “acyclic” when the functor is clear) if the higher
right derived functors vanish,

RiF (A) = 0 for all i > 0.

This also works for left derived functors and F contravariant.
It’s worth noting that injective (resp. projective) objects are acyclic, and in fact acyclic

resolutions can be used to compute derived functors.

additive functor: A (covariant) functor F : A → B, where A ,B are abelian categories, is addi-
tive if the induced map HomA (A,A′)→ HomB(F (A), F (A′)) is a homomorphism of abelian
groups. That is, F (f + g) = F (f) + F (g) for all f, g ∈ Hom(A,A′).
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adjoint: Suppose A and B are categories with functors F : A → B and G : B → A . F and G
are adjoint if there is a natural bijection

τAB : MorB(F (A), B)→ MorA (A,F (B))

for all A ∈ A and B ∈ B. We say F is left adjoint and G is right adjoint. The adjective
“natural” here refers to the fact that if f : A→ A is a map in A then we have

MorB(F (A), B) MorA (A,G(B))

MorB(F (A′), B) MorA (A′, G(B))

τAB

τA′B

(Ff)∗ f∗

and a similar diagram given a map g : B → B′.

affine: A scheme X is affine if X ' SpecA, as ringed spaces, for some ring A.
A map of schemes π : X → Y is affine if for every open U ⊆ Y , π−1(U) is an affine open

subscheme of X.

affine-local: A property P is said to be affine-local if it is sufficient to check it on an affine cover.
See local on the for more.

affine space: Classically, affine n-space, Ank , over a field k is the vector space of n-tuples, kn.
As a scheme, we take Ank = Spec k[x1, . . . , xn], whose closed points are identified with the
classical points when k is algebraically closed.

Over an arbitrary ring, AnA = SpecA[x1, . . . , xn]. We can extend this to an arbitrary base
scheme Y by taking the fiber product, AnY = AnZ ×Z Y .

ample: Let X be a projective (proper is sufficient) A-scheme and L a line bundle on X. We say
L is very ample if there exist n + 1 sections with no common zero such that the linear
system defines a closed embedding X ↪→ PnA. Note that very ampleness implies base point
freeness.

An equivalent definition (see Exercise 16.6.A) is that X ' ProjS• where S• is a finitely
generated graded ring over A and L ' OProjS•(1). If π : X → SpecA, we may refer to this
as π-very ample.

A line bundle L on X is ample if L ⊗n is very ample for some n > 0. This is equivalent
to L ⊗n very ample for all n� 0.

base point: Let X be a k-scheme and L a line bundle on X. A base point P ∈ X of L (or of
a linear system V ) is defined to be a point on which all elements of Γ(X,L ) vanish. The
base locus of L is defined to be the scheme-theoretic intersection of the vanishing loci of
each element of Γ(X,L ).

We say L is base point free if it has no base points, and define the base point free
locus as the complement of the base locus in X. It is useful to note that base point freeness
of L is equivalent to L being globally generated.

The utility of this is that an n + 1 dimensional subset of Γ(X,L ) defines a morphism
X − {base locus} → Pnk . This map is given by evaluating (a basis of) the sections at P to
obtain and (n+ 1)-tuple not all zero.

canonical bundle/sheaf: Suppose X is a smooth k-variety of dimension n. The canonical sheaf
KX is taken to be the top wedge power of ΩX/k,

KX = ∧nΩX/k = det ΩX/k,

which is an invertible sheaf, i.e. a line bundle, on X. (See also exterior algebra, determinant,
(co)tangent sheaf.)
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When X is projective (proper is sufficient), KX is a dualizing sheaf. This is particu-
larly useful in computing the genus, and other cohomological properties. The canonical
sheaf/divisor also plays a central role in Riemann–Roch and Riemann–Hurwitz.

Cartier divisor: Let (X,OX) be a scheme with sheaf of total quotients K . A Cartier divisor
on X is a global section of the sheaf K ×/O×X . This is equivalent to giving an open cover

X = ∪Ui and elements fi ∈ Γ(Ui,K ×) such that fi/fj ∈ Γ(Ui ∩ Uj),O×X).
Another characterization of Cartier divisors is to take an effective divisor to be a closed

subscheme D ↪→ X such that the ideal sheaf of D is an invertible sheaf on X. The sum of
such divisors is seen to be the product of ideal sheaves.

A Cartier divisor is principal if it is in the image of the map Γ(X,K ×)→ Γ(X,K ×/O×X).
We can define an equivalence relation on Cartier divisors by D ' D′ if and only if D −D′
is a principal divisor. Then we define the Cartier divisor class group CaClX to be the
Cartier divisors mod this equivalence relation.

category of open sets: Let X be a topological space. The category of open sets on X is a
category whose objects are the open sets of X and whose morphisms are inclusions V ⊆ U .

Čech cohomology: Let F be a sheaf of abelian groups on a quasicompact, separated scheme X
with X = ∪Ui a finite open cover. The Cech complex of F with respect to the cover is

0→
∏
i

Γ(Ui,F )→
∏
i<j

Γ(Ui ∩ Uj ,F )→ · · · .

The maps in the complex above are given by plus or minus the restriction map, with the
sign determined by the position of the additional index. If I is a (finite) subset and i ∈ I is
at position k, then the map is given by

(−1)k resUI−{ i },UI
.

This is necessary to ensure that it is a complex.
The i-th Cech cohomology of F with respect to the chosen cover is the cohomology

of the complex, denoted Hi(X,F ). It is a nontrivial fact that this does not depend on the
chosen cover (see Theorem 18.2.2).

closed: A continuous map π : X → Y is closed if π(K) is closed for all closed subsets K ⊆ X. π
is said to be universally closed if for all Z → Y , the induced map X ×Y Z → Z is closed.

In a topological space X, we say a subset C is locally closed if it the intersection of an
open and closed subset. This is equivalent to C being closed in an open subset A with the
subspace topology, or C being open in a closed subset B with the subspace topology.

closed embedding: An affine morphism of schemes π : X → Y is a closed embedding if for
every open SpecB ⊆ Y with preimage π−1(SpecB) ' SpecA, the induced map B → A is a
surjection. Hence A ' B/I for an ideal I.

coherent: A finitely generated A-module M is coherent if for any map (not necessarily surjective)
An →M the kernel is finitely generated. Note that coherent implies finitely presented which
further implies finitely generated. When A is Noetherian, these three notions coincide.

A sheaf of OX -modules F is coherent if it is quasicoherent and locally we have F |SpecA '
M̃ for a coherent A-module M . The coherent sheaves on X form a sub abelian category
CohX ⊂ QCohX .

cohomology: Let A• be a complex in an abelian category A . The ith cohomology of A• is
ker δi/ im δi−1, denoted hi(A•).
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Given a map of complexes f : A• → B•, one can check that there is an induced map on
cohomology, hi(A•) → hi(B•). Moreover, if 0 → A• → B• → C• → 0 is a short exact
sequence, then the snake lemma induces a map δi : hi(C•) → hi+1(A•), which gives a long
exact sequence

· · · → hi−1(C•)
δi−1

−−−→ hi(A•)→ hi(B•)→ hi(C•)
δi−→ hi+1(A•)→ · · · .

cokernel: The presheaf cokernel of a map φ : F → G of (pre)sheaves on X is the presheaf given
by (cokerφ)(U) = cokerφ(U). It satisfies the universal property of cokernels in the category
of presheaves on X.

When F and G are sheaves, the presheaf cokernel is not in general a sheaf. We define
the cokernel of φ as the sheafification of the presheaf cokernel.

complex: In an abelian category A , a complex A• is a sequence of objects Ai for i ∈ Z along
with maps δi : Ai → Ai+1 such that δi+1 ◦ δi = 0 for all i. This is equivalent to saying that
the im δi ⊆ ker δi+1.

A morphism of complexes f : A• → B• is a collection of maps f i : Ai → Bi which
commutes with the δi maps. We write this as δi ◦ f i = f i+1 ◦ δi, without distinguishing
between the boundary maps on A• and B•.

condition (∗): Let X be a scheme. We say X satisfies condition (∗) if X is Noetherian, integral,
separated, and regular in codimension one.

constructible: The family of constructible sets within a Noetherian topological space is the
smallest family containing (i) all the open sets, (ii) finite intersections, and (iii) complements.
This turns out to be equivalent to finite disjoint unions of locally closed subsets.

degenerate: An embedding X → Pn — and equivalently a line bundle L or linear system |V | on
X — is degenerate if the image of X is contained in a hyperplane.

degree: There are several definitions of degree, in various contexts, listed below. They all agree
with each other when they should.

(Degree of a point) If X is locally finite type scheme and p ∈ X is a closed point, the
degree of the function field κ(p) ' OX,p/mp as an extension of k is called the degree of p.

(Degree of a map) Let π : X → Y be a map of schemes and p ∈ Y a point. The degree of
π at p is defined to be the κ(p)-rank of the fiber of π∗OX at p. That is, it is the dimension
of (π∗OX) ⊗ κ(p) as a κ(p)-vector space. After untangling this definition, it is seen to be
equal to the dimension (again as a κ(p)-vector space) of the space of functions on the fiber
above p.

When X is a curve with no embedded points (e.g. reduced), Y is a regular curve and π is
finite, one finds that π∗OX is locally free of finite rank. We take this rank to be the degree
of π, with no reference to a point needed.

(Degree of a divisor) If D =
∑
nipi is a Weil divisor on a regular projective curve C/k,

the degree of D is

degD =
∑

ni deg pi,

where the degree of a point is given above.
(Degree of a line bundle) If L is an invertible sheaf on a projective curve C/k, the degree

of L is

degC L = χ(C,L )− χ(C,OC),

where χ denotes the Euler characteristic. Importantly, when D = div s for a section of L ,
i.e. L ' O(D), we have the agreement that degD = degC L . This also plays nicely with
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pullback in that if π : C ′ → C is a finite map, then

degC′ π
∗L = (deg π)(degC L ).

(Degree of a coherent sheaf ) If F is a coherent sheaf on an integral projective curve C,
then the degree of F is

deg F = χ(C,F )− (rank F )χ(C,OC).

This is easily seen to agree with the degree of a line bundle when rank F = 1.
(Degree via hyperplanes) If X ↪→ Pn is a projective k-variety, we define the degree by

intersecting X with dimX hyperplanes in general position and counting points (which will
not have multiplicity due to the general position).

(Degree via Hilbert polynomials) If i : X ↪→ Pn is a projective k-scheme, we define the
degree of X in terms of the Hilbert polynomial pX(m). Namely, the degree is (dimX)!
times the coefficient of the mdimX term.

Note that this is not an intrinsic invariant, and depends on the embedding. For example,
P1 can have degree 1 when embedded into P2 as a hyperplane. The rational normal curve
in Pn, however, is seen to have degree n.

δ-functor: Let A ,B be abelian categories. A (covariant) δ-functor from A to B is a collection
of functors T = (T i)i≥0 along with a boundary morphism δi : T i(A′′)→ T i+1(A′) for every
short exact sequence 0→ A′ → A→ A′′ → 0 such that

(i) For each short exact sequence, there is a long exact sequence

0→ T 0(A′)→ T 0(A)→ T 0(A′′)
δ0−→ T 1(A′)→ T 1(A)→ · · ·

(ii) for each morphism f of short exact sequences A• → B• the map commutes with the
δi, in that f ◦ δi = δi ◦ f : T i(A′′)→ T i+1(B′).

derived functors: Let A be an abelian category with enough injectives, and F : A → B be an
additive, covariant, left exact functor to another abelian category B. The right derived
functors RiF : A → B are defined as

RiF (A) = hi(F (I•))

where A→ I• is any injective resolution of A.
If F is instead a right exact functor, and A has enough projectives, one can define the

left derived functors LiF similarly by projective resolutions,

LiF (A) = hi(F (P •))

where P • → A is any projective resolution.
If F is contravariant, these definitions can be modified to make sense, or one can view F

as a covariant functor from A op to B and define the derived functors there.

determinant: If F is a locally free sheaf of rank r, then the top wedge power ∧rF is known
as the determinant, denoted det F , which is a locally free sheaf of rank 1. This is a
calculation that can be done locally, on the r-th exterior power ∧rAr. Possibly the most
famous determinant sheaf is the canonical bundle/sheaf, which is det ΩX/k.

A useful property of determinant sheaves is that if 0→ F1 → · · · → Fn → 0 is an exact
sequence of locally free sheaves on X, then

det F1 ⊗ (det F2)∨ ⊗ det F3 ⊗ · · · ⊗ (det Fn)∨
n+1

' OX .

diagonal: Let π : X → Y be a map. The diagonal morphism δπ is the unique map X → X×Y X
induced by mapping X → X identically to both factors. Note that this makes sense in
any category that fiber products do, namely schemes, topological spaces, and sets. In the
category of schemes it is a locally closed embedding.
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differential: Let B → A be a map of rings. The module of (relative or Kähler) differentials
is an A-module ΩA/B generated by symbols da for a ∈ A with several relations. It can be
viewed as coming from a B-linear “differential” map d : A→ ΩA/B satisfying
• d(a+ a′) = da+ da′,
• d(aa′) = ada′ + a′da,
• db = 0 for all b ∈ imB.

direct image: Let π : X → Y be a map of schemes and F an OX -module. The direct image π∗F
naturally has the structure of an π∗OX -module. Since π] : OY → π∗OX , this naturally en-
dows π∗F with the structure of an OY -module. We call π∗F with the OY -module structure
the direct image of F by π.

divisor class group: Let X satisfy (∗). We define an equivalence relation on DivX by D ∼ D′ if
and only if D−D′ = (f) for some f ∈ K×. The divisor class group of X, denoted Cl(X),
is DivX/ ∼.

dominant: A rational map (or morphism) π : X 99K Y is dominant if there is some open U ⊆ X
for which π : U → Y has dense image.

dualizing sheaf: Let X be a projective (or proper) scheme over a field k of dimension n. A dual-
izing sheaf for X is a coherent sheaf ω on X, together with a trace map Tr: Hn(X,ω)→ k
such that for any coherent sheaf F on X we have the pairing

Hom(F , ω)×Hn(X,F )→ Hn(X,ω)
Tr−→ k

induces an isomorphism

Hom(F , ω)
∼−→ Hn(X,F ))∨.

The existence of a dualizing sheaf is part of the proof of Serre duality.

effaceable: An additive functor : A → B is effaceable if for each object A, there exists a
monomorphism u : A → M such that F (u) = 0. We say F is coeffaceable if there ex-
ists an epimorphism u : P → A such that F (u) = 0.

étale: A morphism of schemes π : X → Y is étale if it is smooth of relative dimension 0. This is
similar to the notion of a “local isomorphism” (nearly a covering space), or a combination
of smooth and unramified.

Euler characteristic: The Euler characteristic is generally an alternating sum of dimensions of
cohomology vector spaces,

χ =

∞∑
i=0

(−1)ihi.

For example, suppose X is a projective k-scheme, F is a coherent sheaf on X, and Hi(X,F )
denotes the i-th sheaf cohomology (or Čech cohomology) group, which is a k-vector space.
Then

χ(X,F ) =

∞∑
i=0

(−1)i dimkH
i(X,F ).

This is well defined because for all i � 0 the i-th cohomology vanishes, and it is invariant
upon field extension, i.e. if K/k is a field extension, we get the same number if we compute
χ(XK , π

∗F ), where XK = X ×k SpecK and π : XK → X is the natural map.
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exact: In an abelian category A , a sequence of maps A
f−→ B

g−→ C is exact at B if ker g = im f .
We say a sequence

0→ A
f−→ B

g−→ C → 0

is a short exact sequence if f is injective, g is surjective, and ker g = im f .
An additive functor F : A → B, where A ,B are abelian categories, is left exact if for

all short exact sequences 0→ A→ B → C → 0, we have

0→ F (A)→ F (B)→ F (C)

is exact. Similarly, we call F right exact if for all short exact sequences,

F (A)→ F (B)→ F (C)→ 0

is exact. We call a functor simply exact if it is both left and right exact, in which case for
all short exact sequences,

0→ F (A)→ F (B)→ F (C)→ 0

is exact.

ext: There are two ways to define the Ext functors/modules, which are seen to agree, using a
spectral sequence argument. First, given an A-module M , we define ExtiA(M,N) to be the
right derived functors of HomA(M, ·). This gives the usual natural long exact sequence of
Ext modules.

Alternatively, for an A-module N , we could take the right derived functors of the (con-
travariant) left exact functor HomA(·, N) to be ExtiA(·, N). This also gives a natural long
exact sequence of Ext modules.

extension by zero: Let i : U ↪→ X be an inclusion of an open set. We define a functor i! called
the extension of i by zero from O|U -modules to OX -modules by the sheafification of the
presheaf

V 7→

{
F (V ) if V ⊆ U
0 if V 6⊆ U

.

i! is an exact functor and a left adjoint to the inverse image i−1. This is useful, as it
implies i−1 is exact in this setting, since it is both a right adjoint (of i!) and a left adjoint
(of i∗).

exterior algebra: Let M be an A-module. The n-th exterior (or wedge) power ∧nM is the
quotient of TnM by the ideal generated by elements of the form (m1 ⊗ · · · ⊗ mn) where
mi = mj for some i 6= j. Note that this implies m1⊗m2 = −(m2⊗m1), and more generally
(m1 ⊗ · · · ⊗mn) = (−1)sgn σ(mσ(1) ⊗ · · · ⊗mσ(n)).

We can form the graded ring ∧•M , which satisfies a universal property: if φ : M → B is a
map of A-modules to an A-algebra B such that (φ(m))

2
= 0 for all m ∈M , then φ extends

to a unique map ∧•M → B.
If F is a quasicoherent sheaf on X, we can define ∧nF by looking locally: if F |SpecA 'M

we define ∧nF |SpecA = ∧nM . One must check that this construction glues.

If M ' A⊕m is a free module of rank m, we have ∧n(Am) ' A(m
n). This can be seen by

recognizing that a basis for ∧n(Am) consists of basis elements e1 ⊗ · · · ⊗ en where i < j,
since if any i = j we get zero and we can always reorder by multiplying by ±1. If F is a
locally free sheaf of rank m, this implies ∧nF has rank

(
m
m

)
. In particular, this shows that

the top wedge power ∧mF has rank 1. This is called the determinant sheaf.
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factorial: A scheme X is factorial if all stalks OX,p are unique factorization domains. Note that
this implies X is normal scheme, since UFDs are integrally closed domains. Since localiza-
tions of UFDs are UFDs, we also have SpecA is factorial whenever A is a UFD.

faithful: A (covariant) functor F : A → B is faithful if for all pairs of objects A,A′ ∈ A the induced
map

MorA(A,A′)→ MorB(F (A), F (A′))

is injective.

faithfully flat: An A-module N is faithfully flat if any complex of A-modules

M ′ →M →M ′′

is exact if and only if

M ′ ⊗A N →M ⊗A N →M ′′ ⊗A N

is also exact. Note that flatness implies only one direction of this equivalence. As with
flatness, an A-algebra B is faithfully flat if B is faithfully flat as an A-module.

A morphism of schemes π : X → Y is faithfully flat if it is flat and surjective. A map
of affine schemes SpecA → SpecB is faithfully flat if and only if A is faithfully flat as a
B-module, as should be the case.

fiber: Let π : X → Z be a map of schemes, and let p be a point of Z with residue field k. Let i be
the inclusion Spec k → Z, with the natural isomorphism of residue fields at p. The fiber of
π above p is the fiber product π−1(p) = Spec k ×Z X.

If Z is irreducible, the fiber above the generic point is called the generic fiber of π.

fiber product: Let X,Y be schemes over Z. The fiber(ed) product, X ×Z Y , is the scheme
satisfying the universal property of fiber products. That is, if W is a scheme with maps
to X,Y that agree after composition to Z, there is a unique map W → X ×Z Y that is
compatible with the others.

finite: If B is a ring and A is a B-algebra, we say A is finite if it is finitely generated as a B-module.
Note that this is stronger than being finitely generated as a B-algebra.

We say a morphism of schemes π : X → Y is finite if for every affine open SpecB of Y ,
π−1(SpecB) = SpecA, where A is a finite B algebra. Note that by definition, finite maps
are affine.

finite type: A morphism of schemes π : X → Y is locally of finite type if for every affine open
SpecB ⊆ Y , and every affine open of the preimage SpecA ⊆ π−1(SpecB), the induced ring
map B → A makes A a finitely generated B-algebra. This is equivalent to π−1(SpecB)
having a cover by affine opens SpecAi ⊆ X for which each Ai is a finitely generated B-
algebra.

We say π is of finite type if it is locally of finite type and quasicompact. This is
equivalent to being able to cover π−1(SpecB) by finitely many affine opens SpecAi.

finitely presented: A ring A is a finitely presented B-algebra if A is isomorphic to

B[x1, ..., xn]/(r1(x1, ..., xn), ..., rm(x1, ..., xn)),

that is it is a finitely generated B algebra with finitely many relations. Note that if B is
Noetherian, this is the same as finitely generated.

Consequently, a morphism of schemes π : X → Y is locally of finite presentation if
for each affine open SpecB ⊆ Y we have π−1(SpecB) is covered by SpecAi where each Ai
is a finitely presented B-algebra. We drop the locally and say π is of finite presentation
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if it is qcqs also. Note that if Y is locally Noetherian, then locally of finite presentation is
equivalent to locally of finite type.

A related notion is that of a finitely presented A-module. We say M is finitely
presented if there is an exact sequence Aq → Ap �M → 0. That is, M is finitely generated
with “finitely generated relations.”

flasque: A sheaf F on X is flasque if for every V ⊆ U , the restriction map resU,V : F (U)→ F (V )
is surjective.

Flasque sheaves are acyclic in sheaf cohomology.

flat: An A-module N is flat if the functor ·⊗AN is exact. A priori it is right exact, so the content of
this definition is that · ⊗AN is left exact; this is equivalent to for every injection M ′ ↪→M ,
we have M ′ ⊗A N ↪→M ′ ⊗A N .

A quasicoherent sheaf F on a scheme X is flat at a point p if the stalk Fp is a flat
OX,p-module. If F is flat at all p ∈ X, we call F flat. On an affine scheme SpecA, flatness

of M̃ at stalks is equivalent to flatness of M as an A-module (see e.g. Proposition 24.2.3).
A map of schemes π : X → Y is flat at p ∈ X if OX,p is flat as an OY,π(p)-module.

Similarly, if π is flat at all p ∈ X, we call it flat.
An equivalent formulation is to call π : X → Y is flat if the pullback functor π∗ from

quasicoherent sheaves on Y to quasicoherent sheaves on X is exact. This can seen to
be equivalent to the above definition because we can check exactness on stalks, and via
intermediate results about flatness (Exercise 24.2.C I think).

free: We say an OX -module F is free if F ' ⊕IOX for some collection I. As usual, the rank is
the number of copies of OX in the direct sum.

If X can be covered by open sets Ui such that F |Ui
is free for all i, then we say F is

locally free. Here the rank is only defined on open sets, but if X is connected, then the
rank is the same everywhere.

functor of points: Let X be an object in a category C. The functor of points, denoted hX , is
a contravariant functor C → Sets given by hX(T ) = Mor(T,X). In the case where C is the
category of schemes, notice that hX(T ) = X(T ) are the T -points of X.

full: A (covariant) functor F : A → B is full if for all pairs of objects A,A′ ∈ A the induced map

MorA(A,A′)→ MorB(F (A), F (A′))

is surjective.
We say a subcategory A′ of A is full if the inclusion functor is full. One can think of

this as the subcategory having possibly fewer objects, but never losing morphisms between
objects.

fully faithful: A (covariant) functor F : A → B is fully faithful if it is both full and faithful. That
is, for all pairs of objects A,A′ ∈ A the induced map

MorA(A,A′)→ MorB(F (A), F (A′))

is a bijection.

general: Something is said to be general if it holds in some dense open set. A general point of
a scheme X has a certain property if there exists a (dense) open set U ⊆ X such that all
points p ∈ U have the property.

Similarly, the general fiber of a map π : X → Y has a certain property if there is a
dense open neighborhood U ⊆ Y for which the fiber of π over p ∈ U has the property for all
p ∈ U .
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generic: Let X be an irreducible scheme. The generic point of X is a point η ∈ X for which
{ η } = X. We can naturally also talk about generic points for irreducible closed subschemes
of a scheme X.

Let π : X → Y be a map of schemes. The generic fiber of π is the fiber over the generic
point η ∈ Y .

genus: The geometric genus of a projective scheme X is defined to be the dimension of the regular
sections of the canonical bundle/sheaf, h0(X,ωX). By Serre duality, this is equivalent to
hn(X,OX), where n = dimX.

The arithmetic genus pa(X) is defined in terms of the Euler characteristic of X,

pa(X) = (−1)n (χ(OX)− 1) ,

where again n = dimX. In particular we have when n = 1, i.e. X is a curve,

pa(X) = 1− χ(OX).

In good circumstances — when X is smooth and projective — the arithmetic and geomet-
ric genus coincide. When X is further defined over the field of complex numbers, this number
coincides with the topological definition of genus coming from (singular) cohomology.

geometric fiber: A geometric fiber of a morphism π : X → Y is defined to be the fiber over
a geometric point. That is, it is the pullback π−1(p) = X ×Y Spec k of a geometric point
p : Spec k → Y .

geometric point: A geometric point of a scheme X is a morphism Spec k → X where k = k is
an algebraically closed field.

geometrically: A morphism π : X → Y is geometrically if all of every geometric fiber has
property . Such properties could include connected, irreducible, integral, or reduced.

A k-scheme X is said to be geometrically if the structure morphism has geomet-
rically fibers.

germ: If F is a sheaf on X, a germ is an element of a stalk Fp, essentially a local function at
a point p. We describe this constructively as the equivalence class of a pair (U, s), where
p ∈ U and s ∈ F (U), and the equivalence is given by (U, s) ∼ (V, t) if and only if there
exists W ⊆ U ∩ V such that s|W = t|W .

globally generated: An OX -module F on X is globally generated (or generated by global
sections) if for some index set I we have a surjection

O⊕IX � F .

Given such a map, the generators of F are the images of 1. If I is a finite set, we might say
F is finitely globally generated.

If p ∈ X is a point, we say that F is globally generated at p if there is a morphism
O⊕IX → F (not necessarily a surjection) such that the induced morphism on stalks is a
surjection:

O⊕IX,p � Fp.

Similarly, if I is finite then we say F is finitely globally generated at p.
A line bundle L on X is globally generated if and only if it is base point free.

graded ring: A (Z-)graded ring is a ring S• = ⊕n∈ZSn, where multiplication acts by a map
Sm × Sn → Sm+n. Sometimes the grading is assumed to be only for positive integers, i.e.
Sn = 0 for n < 0. The elements of Sn are the homogeneous elements of degree n.
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S• is a graded ring over S0, where S0 is called the base ring. Note that S• is an S0-
algebra, and Sn is an S0-module for each n. The ideal I = ⊕n≥1Sn is called the irrelevant
ideal.

We say S• is a finitely generated graded ring over S0 if the irrelevant ideal is finitely
generated. We say S• is generated in degree 1 if S• is generated by S1 as an S0-algebra.

homogeneous: A homogeneous element of graded ring S• is contained in some Sn.
An ideal I ⊆ S• is called homogeneous if it is generated by homogeneous elements.

Hilbert function: Let F be a coherent sheaf on a projective k-scheme X ⊂ Pnk . The Hilbert
function of F is

hF (m) = h0(X,F (m)).

For m� 0 this agrees with the Euler characteristic of F ; see Hilbert polynomials.

Hilbert polynomial: Let F be a coherent sheaf on a projective k-scheme X ⊂ Pnk . The Hilbert
polynomial of F pF (m), defined by

pF (m) = χ(X,F (m))

is a polynomial in m. The Hilbert polynomial of X is given by the structure sheaf,

pX(m) = pOX
(m) = χ(X,OX(m)).

homotopic: Let f, g : A• → B• be morphisms of complexes. We say f and g are homotopic,
denoted f ∼ g, if there exist maps hi : Ai → Bi−1 such that f i − gi = δi−1hi + hi+1δi for
all i. Note that homotopic maps induce the same maps on cohomologies hi(A•)→ hi(B•).

ideal sheaf: If Y is a scheme with structure sheaf OY , an ideal sheaf I is a sub-OY -module.
That is, for each open U , I (U) is an ideal of OY (U).

In particular, given a closed embedding X → Y , we can define IX/Y (U) to be the kernel
of the surjection OY (U)→ π∗OX(U). This gives an exact sequence

0→ IX/Y → OY → π∗OX → 0

of OY -modules.

image: The presheaf image of a map φ : F → G of (pre)sheaves on X is the presheaf given
by (imφ)(U) = imφ(U). It satisfies the universal property of images in the category of
presheaves on X.

When F and G are sheaves, the presheaf image is not in general a sheaf. We define the
image of φ as the sheafification of the presheaf image.

For a map of schemes, we have the notion of scheme-theoretic image.

injective: An object I in an abelian category A is injective if Hom(·, I) is an exact (contravariant)
functor from A to abelian groups.

An injective resolution of an object A is a complex I• with a map A→ I0 such that

0→ A→ I0 → I1 → · · ·

is exact.
If every object in A is isomorphic to a subobject of an injective object, then we say the

category A has enough injectives.

integral: A morphism of schemes π : X → Y is integral if π is affine and for every open SpecB ⊆ Y
we have π−1(SpecB) = SpecA and the induced map B → A is an integral ring morphism.
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We say a ring morphism φ : B → A is integral if every element of a is the root of a monic
polynomial with coefficients in φ(B). In the special case that φ is an inclusion (B ⊆ A) then
we call A an integral extension.

integrally closed: Let A be an integral domain with fraction field K(A). We say A is integrally
closed if for all monic polynomials f(x) ∈ A[x], if α ∈ K(A) is a root of f(x), then α ∈ A.

inverse image: Let π : X → Y be a continuous map of topological spaces and G a sheaf on Y .
The inverse image functor from sheaves on Y to sheaves on X is defined to be the left
adjoint of pushforward. That is, there is a natural bijection

MorX(π−1G ,F )→ MorY (G , π∗F )

functorial in both arguments. More explicitly, we can describe a presheaf

(π−1,preG )(U) = lim−→
V⊃π(U)

G (V )

and take π−1G to be the sheafification of this presheaf on X. One then checks that this
satisfies the desired adjointness property. Since left adjoints preserve colimits, we find that
if π(p) = q then (

π−1G
)
p

= Gq.

Note that the inverse image π−1G of an OY -module is an π−1OY -module, but not neces-
sarily an OX -module. Just as in the case of modules over rings, this can be fixed by tensoring
appropriately with OX along the map π−1OY → OX ; see pullbacks.

invertible sheaf: A locally free sheaf of OX -modules of rank 1 is called an invertible sheaf.

irreducible: A topological space X is said to be irreducible if it cannot be written as the union
of proper nonempty closed subsets. Equivalently, X is irreducible if X = X1 ∪X2 with Xi

closed implies that X1 = X or X2 = X.
A scheme X is said to be irreducible if it is irreducible as a topological space. In the

special case of affine schemes X = SpecA, the points p ∈ SpecA parameterize the irreducible
closed subschemes of X.

Jacobian: The Jacobian matrix is defined as usual from calculus. That is, given f1, . . . , fr ∈
k[x1, . . . , xn] the Jacobian at a point x ∈ kn is the n× r matrix

J =


∂f1
∂x1

(x) ∂f2
∂x1

(x) · · · ∂fr
∂x1

(x)
∂f1
∂x2

(x) ∂f2
∂x2

(x) · · · ∂fr
∂x2

(x)
...

...
. . .

...
∂f1
∂xn

(x) ∂f2
∂xn

(x) · · · ∂fr
∂xn

(x)


where the partial derivatives are defined formally.

The Jacobian of a variety X is also used to refer to degree zero divisor classes, i.e. Pic0X.

kernel: The presheaf kernel of a map φ : F → G of (pre)sheaves on X is the presheaf given
by (kerφ)(U) = kerφ(U). It satisfies the universal property of kernels in the category of
presheaves on X.

When F and G are sheaves, the presheaf kernel is itself a sheaf, so we may call it the
kernel.

linear system: If X is a k-scheme and L is a line bundle on X, a linear system is a vector
space V together with a map to Γ(X,L ). We can define base points and base point freeness
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just as for line bundles, as well as use n + 1 dimensional linear systems to give a map
X − {base locus} → Pnk .

local on the : A property of maps of schemes is called local on the target if (a) whenever
π : X → Y has the property, so does the natural restriction π : π−1(V )→ V for any open V
in Y , and (b) if π : X → Y is a map and there is an open cover Y = ∪i∈IVi for which the
restriction has the property, then π has the property.

Dually, a property of maps is called local on the source if when checking if π : X → Y
has the property, it suffices to check that the restrictions πi : Ui → Y have the property,
where X = ∪i∈IUi is an open cover.

We say a property is affine-local on the source or target if it suffices to check on any
affine cover of the source/target. This is stronger, because it says that only one affine cover
need be checked, rather than all open covers.

locally closed: A subset S ⊆ X is locally closed if it is the intersection of an open subset with a
closed subset. This is equivalent to S being an open subset of a closed subset, or a closed
subset of an open subset.

A morphism of schemes X → Y is a locally closed embedding if it factors into

X → Z → Y

where X → Z is a closed embedding and Z → Y is an open embedding. So X is (isomorphic
to) a closed subscheme of Z, which is (isomorphic to) an open subscheme of Y .

locally free: A sheaf F on X is said to be locally free of rank n if there exists an open cover
X = ∪Ui on which F |Ui

' O⊕nUi
. Such a cover is called a trivialization of F , and

sometimes F is referred to as “locally trivial.” Given a trivialization, we have isomorphisms
φij : Γ(Ui ∩ Uj ,O⊕nUi

)→ Γ(Ui ∩ Uj ,O⊕nUj
) called transition functions, satisfying the usual

cocycle condition. They are so called because for affine SpecA ⊂ Ui∩Uj , φij can be identified
with an invertible n× n matrix with entries in A.

A locally free sheaf of rank 1 is sometimes called a line bundle or an invertible sheaf.
The reason for the former is that geometrically a locally free sheaf is a line bundle, i.e. a
dimension one vector bundle. I’d venture to guess that the latter name is given because
the dual Hom(F ,OX) is also locally free of rank one, and is inverse to F in the sense that
F ⊗ Hom(F ,OX) ' OX . In fact, the invertible sheaves form a group called the Picard
group PicX.

morphism of (pre)sheaves: Let F ,G be presheaves on X with values in the same category C.
A morphism of presheaves φ : F → G is a natural transformation, when F and G are
viewed as contravariant functors. That is, φ is the data of maps φ(U) : F (U) → G (U) for
all open U such that whenever V ⊆ U ,

F (U) G (U)

F (V ) G (V )

φ(U)

resU,V resU,V

φ(V )

commutes.
We define an isomorphism of (pre)sheaves in the categorical sense as a two-sided inverse.

natural isomorphism: Let F,G : C → D be functors. A natural isomorphism F → G is a
natural transformation such that F (X)

∼−→ G(X) is an isomorphism for all objects X ∈ C.
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This is the notion of isomorphism in the category of functors C → D, as given a natural
isomorphism, we can define a natural isomorphism G→ F such that upon composition, we
obtain the identity functor.

natural transformation: Let F,G : C → D be (covariant) functors. A natural transformation
F → G is the data of maps (in D) F (X)→ G(X) for all X ∈ C, such that for any f : X → Y
the diagram

F (X) G(X)

F (Y ) G(Y )

F (f) G(f)

commutes.
If F,G are contravariant functors, we instead ask for the diagram

F (X) G(X)

F (Y ) G(Y )

F (f) G(f)

to commute.
Natural transformations are the correct formulation of a morphism of functors, and are

taken to be the arrows in the category of covariant/contravariant functors C → D.

Noetherian: A scheme X is locally Noetherian if it has an affine cover X = ∪i∈I SpecAi by
Noetherian rings Ai. If X is also quasicompact, so we can make this cover finite, we drop
“locally” and call X Noetherian.

A ring A is Noetherian if it satisfies the ascending chain condition on ideals. That is,
any increasing chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals of A eventually stabilizes. This is equivalent
to every ideal of A being finitely generated.

A topological space X is Noetherian if it satisfies the descending chain condition for
closed subsets – any sequence K1 ⊇ K2 ⊇ · · · eventually terminates.

normal scheme: A scheme X is called normal if all of its stalks OX,p are integrally closed domains.

normalization: Let X be an integral k-scheme. A normalization of X, often denoted X̃, is a

normal scheme scheme together with a dominant morphism X̃ → X satisfying the universal

property that for any normal scheme Y with a map to X, it factors uniquely through X̃.

Y X̃

X

In the special case X = SpecA, the normalization is the spectrum of the integral closure of
A in its fraction field.

(co)normal sheaf: Let Z ↪→ X be a closed embedding (in fact locally closed is enough) with ideal
sheaf I . The conormal sheaf N ∨

Z/X is defined to be I /I 2, interpreted as a sheaf on Z.

Thus the normal sheaf NZ/X =
(
N ∨
Z/X

)∨
is taken to be the dual of the conormal sheaf.

open embedding: Let (Y,OY ) be a ringed space (e.g. a scheme). If (U,OU ) is a ringed space
with a map π : U → Y (and hence OY → π∗OU ), we call this an open embedding if for
some open subscheme (subset) V ⊆ Y we have (U,OU ) ' (V,OY |V ). That is, we have a
commutative diagram
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(U,OU ) (V,OY |V )

(Y,OY )

∼

π

where the downward map is the natural map.

open subfunctor: Let h, h′ : Sch→ Sets be contravariant functors. We say a natural transforma-
tion h′ → h expresses h′ as an open subfunctor of h if for all representable functors hX
and maps hX → h, the fibered product hX ×h h′ is representable, say by a scheme U , such
that the map hU → hX corresponds to an open embedding of schemes U → X.

perfect: A (bilinear) pairing is a map M ⊗ N → L. By the tensor-hom adjunction, this gives
a canonical map M → HomA(N,L). The pairing is perfect if this canonical map is an
isomorphism.

Picard group: Let X be a ringed space. The Picard group PicX is the group of invertible sheaf
on X with the operation ⊗.

pole: Let X be a scheme with function field K and let Y be a prime divisor. We say f ∈ K× has
a pole at Y if vY (f) < 0, where vY is the valuation at Y .

presheaf: Let X be a topological space. A presheaf F on X with values in a category C is a
contravariant functor from the category of open sets on X to C.

More concretely, a presheaf F is the data of an object F (U) in C for every open U and
restriction maps resU,V : F (U) → F (V ) for all pairs of opens V ⊆ U . These maps satisfy
resU,U = idF(U) and if W ⊆ V ⊆ U the diagram

F (U) F (V )

F (W )

resU,V

resU,W
resV,W

commutes. We may also require F (∅) = 0, in the case of abelian groups or rings, or the
appropriate final object in C.

principal divisor: Let X satisfy (∗) and let K denote the function field of X. For a function
f ∈ K×, we define the (Weil) divisor associated to f to be

(f) =
∑

vY (f)Y,

where the sum is taken over prime divisors, and it can be proven that vY (f) = 0 for all but
finitely man Y . The image of K∗ in DivX under the map f 7→ (f) is called the principal
divisors.

projective: A scheme is a projective A-scheme if it is isomorphic to ProjS• for a finitely gener-
ated graded ring S• over A. This is equivalent to having a closed embedding to PnA for some
n (see very ample).

A quasiprojective A-scheme is a quasicompact open subscheme of a projective A-
scheme.

More generally, if Y is a base scheme, we say π : X → Y is projective if there is an
isomorphism of Y -schemes X → Proj S•, the relative proj of a quasicoherent sheaf of
algebras S• finitely generated in degree 1. In this case X is called a projective Y -scheme.

An object P in an abelian category is a projective object if the functor Hom(P, ·) is
exact. This can be stated in the following diagram.
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P

M N

∃

In the category of A-modules, projective objects are called projective modules. Free
modules are a notable example of projective modules.

projective space: Classically, projective n-space Pnk over a field k is defined as the set of (n+1)
tuples (x0, . . . , xn) 6= (0, . . . , 0) modulo nonzero scalars, so

(ax0, . . . , axn) = (x0, . . . , xn).

In other words, this is the collection of lines passing through the origin in the affine space
An+1
k .
Scheme theoretically, we define projective space over A, PnA, for any ring A by

ProjA[x0, . . . , xn], using the usual degree grading on A[x0, . . . , xn]. Alternatively, we can
construct the space by gluing n+1 copies of affine space Ui ' AnA ' SpecA[x0/i, . . . , x̂i/i, . . . , xn/i]
along the map xk/i 7→ xk/j/xi/j .

Maps X → PnZ are determined by line bundles L on X with n + 1 sections with no
common zeros, up to isomorphism. Hence we can interpret PnZ as the moduli space of this
data. If Y is an arbitrary scheme, then PnY is the moduli space of line bundles on a Y -scheme
X with n + 1 sections possessing no common zeros (up to isomorphism). This is seen to
agree with PnY = PnZ ⊗Z Y by the universal property of the fiber product.

proper: A morphism of schemes π : X → Y is proper if it is separated, finite type, and univer-
sally closed. A k-scheme X (or more generally an S-scheme X) is proper if the structure
morphism X → Spec k is proper (resp. the structure map X → S is proper).

pullback: Let π : X → Y be a map of schemes (so it comes with OY → π∗OX) and G an OY -module.
We define the pullback π∗G to be

π∗G = OX ⊗π−1OY
π−1G ,

which has a natural structure as an OX -module (here we’re using the π−1OY → OX version
of the pullback map).

This defines a functor from OY -modules to OX -modules which is seen to be (or defined
to be) adjoint to pushforward:

MorOY
(π∗G ,F ) = MorOX

(G , π∗F ).

It’s worth noting that since it’s a left adjoint, we immediately have π∗G is right exact.
If further G is quasicoherent, then the pullback π∗G is also quasicoherent. To see this,

take an open SpecB ⊆ Y on which G |SpecB ' M̃ and an affine open SpecA ⊂ X whose
image is in SpecB. This construction shows

Γ(SpecA, π∗G |SpecA,SpecA) ' A⊗B M,

which is naturally an A-module. One further checks that this agrees on the appropriate

distinguished open sets, so π∗G |SpecA ' ˜A⊗B M .

pushforward: Let π : X → Y be a map of schemes. If F is a sheaf on X, then we define the
pushforward π∗F as a sheaf on Y by

π∗F (V ) = F (π−1(V )),

where V ⊂ Y is an open set. If U ⊂ V ⊂ Y , the restriction maps π∗F (V ) → π∗F (U)
are precisely F (π−1(V )) → F (π−1(U)), thus π∗F is seen to be a presheaf. The sheaf
axioms for F imply those on π∗F , which can be seen by recognizing that if V = ∪Vi, then
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π−1(V ) = ∪π−1(Vi), so we can bootsrap the identity and gluing axioms from F to π∗F . If
π(p) = q, then we have an natural map on stalks (π∗F )q → Fp.

Perhaps the most important example of a pushforward is that of the structure sheaf of
a scheme. Namely, in giving a map of schemes X → Y , one needs to provide a map of
structure sheaves OY → π∗OX . This is sometimes called the “pullback” map, because it
tells us how to pull back functions on Y to functions on X. More precisely, if s ∈ Γ(V,OY ),
we should think of s as a function on V , so composing with X → Y should give us a function
on π−1(V ). This is precisely the data of OY (V ) → π∗OX(V ) = OX(π−1(V )). Note that
this also gives a map on stalks OY,q → (π∗OX)q → OX,p if p 7→ q, so “local functions” on Y
pull back to local functions on X.

The pushforward retains any additional structure of F (i.e. sheaf of ab. groups, rings,
etc.). Of particular interest, if F is an OX -module, then π∗F can be endowed with the
structure of an OY -module. A priori, it has the structure of a π∗OX -module, then we use
the map OY → π∗OX to view it as an OY -module. When X → Y is quasicompact and
quasiseparated and F is a quasicoherent sheaf of OX -modules, the pushforward π∗F is a
quasicoherent OY -module.

qcqs: A map (or a scheme?) is qcqs if it is both quasiseparated and quasicompact.
The reason this definition is useful is that if a scheme X is qcqs, it has a finite cover by

affine opens (by quasicompactness) whose intersections are covered by finitely many affine
opens (by quasiseparatedness).

quasicoherent: A sheaf of OX -modules F is quasicoherent if there is a cover of X by affine

opens Ui ' SpecAi such that F |Ui is isomorphic to M̃i for an Ai-module Mi.
We say F is coherent if it is quasicoherent and each Mi is a finitely generated Ai-module.

quasicompact: A scheme X is quasicompact, abbreviated qc, if every open cover X = ∪i∈IUi
reduces to a finite subcover X = ∪i∈SUi, S ⊆ I finite.

We say a map π : X → Y of schemes is quasicompact if for every affine open U ⊆ Y ,
the preimage π−1(U) is quasicompact.

quasifinite: A morphism π : X → Y is quasifinite if it is of finite type and for all q ∈ Y , the
preimage π−1(q) is a finite set.

quasiseparated: A scheme X is quasiseparated if for any two quasicompact opens U, V ⊆ X,
the intersection U ∩ V is also quasicompact.

We say a map π : X → Y of schemes is quasiseparated if for every affine open U ⊆ Y ,
the preimage π−1(U) is a quasiseparated scheme.

rational normal curve: A rational normal curve is a curve of degree n in Pn given explicitly
by the parameterization

[x : y] 7→ [xn : xn−1y : · · · : xyn−1 : yn].

Equivalently, it is the curve in Pn given by |OP1(n)| for n ≥ 1, as one checks that O(P1) is
very ample and h0(P1,O(n)) = n + 1, so this gives an embedding P1 ↪→ Pn. The explicit
coordinates above come from choosing a basis of H0(P1,O(n)); one could obtain different
coordinates by choosing a different basis, but these are all the same up to automorphism of
Pn.

reduced: A ring is reduced if it has no nonzero nilpotent elements. A scheme X is reduced if
the ring of sections OX(U) is reduced for all U . This can in fact be checked on stalks – that
is X is reduced if OX,p has no nonzero nilpotents for all points p.
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regular embedding: Let M be an A-module, and x1, ..., xr ∈ A. We call this a regular sequence
for M if

(i) For all i, xi is not a zerodivisor for M/(x1, ..., xi−1)M (and x1 is not a zerodivisor for
M).

(ii) The inclusion (x1, ..., xr)M (M is proper.
If π : X → Y is a locally closed embedding, we say π is a regular embedding (of

codimension r) at p for a point p in X, if the ideal of X, viewed in OY,p is generated by
a regular sequence of length r. We say π is a regular embedding (of codimension r) if
it is regular (of codimension r) at all p ∈ X.

regular: A Noetherian local ring (A,m) is a regular local ring if and only if dimA = dimA/m m/m2.
A Noetherian ring A is a regular ring if Ap is a regular local ring for all primes p ∈ SpecA.

A locally Noetherian scheme X is regular at a point p (or nonsingular at p if its
stalk OX,p (which is a Noetherian local ring) is a regular local ring. If such X is regular at
all points p, then we say X is regular.

A point p ∈ X for which OX,p is not a regular local ring is called a singularity.

relative proj: Let S• be a graded quasicoherent sheaf of algebras over X, finitely generated in
degree 1, which we take to mean

Sym•OX
S1 � S•.

Then we define relative proj, Proj S• to be the scheme we obtain by gluing together
Proj S•(SpecA)→ SpecA along the affine opens SpecA ⊆ X (this is nontrivial, see Exercise
17.2.B).

In particular, we see that for S• on an affine scheme SpecA, we have Proj S• '
Proj S•(SpecA), so our construction agrees with the usual one.

relative spec: Let X be a scheme and A a quasicoherent sheaf of OX -algebras. There exists
an X-scheme Spec A → X called relative spec of A satisfying the universal property
that giving a map of X-schemes T → Spec A is the same giving a map of OX -algebras
A → π∗OT , where π : T → X is the structure map. That is,

HomX(T,Spec A ) ' HomOX
(A → π∗OT )

or equivalently the functor T 7→ HomOX
(A → π∗OT ) from X-schemes to sets is repre-

sentable, by Spec A .

When the base is affine, say X = SpecB, A is a sheaf Ã associated to a B-algebra A. In

this case, we see Spec Ã ' SpecA, using the fact that

HomB(T, SpecA) ' HomB(A,Γ(T,OT )),

i.e. giving a map T → SpecA is the same as giving an A-algebra structure to the global
sections of T . One can then show that this construction glues to exist in general.

representable: A contravariant functor F : C → Sets is representable if there exists an object
Y ∈ C such that F (X) = Mor(X,Y ). That is, F is isomorphic to hY , where hY is the
functor of points. We say the functor F is represented by Y .

ringed space: A ringed space is a pair (X,OX) where X is a topological space and OX is a sheaf
of rings on X, called the structure sheaf of X.

Two ringed spaces (X,Ox) and (Y,OY ) are isomorphic if they come with a homeomor-
phism π : X → Y of underlying topological spaces and an isomorphism of structure sheaves
OY → π∗OX .

A ringed space is a locally ringed space if its stalks OX,p are local rings for all points
p ∈ X.
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section: If F is a (pre)sheaf on X and U ⊆ X is open, we may refer to F (U) as the sections of
U . The sections of X itself are called global sections.

scheme: A scheme is a ringed space (X,OX) which is “locally affine” in the sense that for every
point p ∈ X there exists an open neighborhood U such that (U,OX |U ) is an affine scheme.

scheme over A: If A is a ring (often we are interested in A = k a field), a scheme over A is a
scheme X such that the sections of the structure sheaf OX are A-algebras, and the restriction
maps are maps of A-algebras.

This notion is equivalent to the data of a scheme X with a map to SpecA, which makes
it easier to define maps of schemes over A to be maps of schemes X → Y such that the
diagram

X Y

SpecA

commutes. This makes SchA into a category.

scheme-theoretic closure: The scheme-theoretic closure of a locally closed embedding π : X →
Y is defined to be the scheme-theoretic image of π.

scheme-theoretic image: Given a map π : X → Y , and a closed subscheme i : Z → Y , we say the
image lies in Z if the composition IZ/Y → OY → π∗OX is zero. The scheme-theoretic
image of π is defined to be the intersection of all such Z, which is a closed subscheme of Y .

Informally, the image is the scheme cut out by functions which vanish when pulled back
to X.

Segre embedding: The closed embedding PmA ×A PnA ↪→ Pmn+m+n
A given by mapping

([x0, ..., xm], [y0, ..., yn]) 7→ [x0y0, x0y1, ..., x0yn, ..., xmyn]

is called the Segre embedding. If A = k is a field, the image is the Segre variety.

separated: A morphism of schemes π : X → Y is separated if the diagonal morphism δπ : X →
X ×Y X is a closed embedding. A scheme over A is separated over A if the structure
map X → SpecA is separated. We call a scheme itself separated if the map X → SpecZ
is separated.

A (generically) finite morphism of integral schemes X → Y is said to be (generically)
separable if it is dominant and the induced extension of function fields K(Y ) → K(X) is
a separable extension of fields. This is automatic in characteristic zero, but comes up as a
hypothesis in Hurwitz’s theorem.

sheaf: Let X be a topological space. A sheaf F on X with values in a category C is a presheaf
satisfying two additional properties, which we call identity and gluability :

identity: Let U = ∪Ui and suppose f, g ∈ F (U) satisfy f |Ui
= g|Ui

for all i. Then f = g.

gluability: Let U = ∪Ui and suppose we have fi ∈ F (Ui) such that fi|Ui∩Uj
= fj |Ui∩Uj

for all i and j. Then there exists f ∈ F (U) such that f |Ui
= fi for all i.

sheaf associated to an A-module M : Let X = SpecA be an affine scheme and M an A-module.

We define the sheaf associated to M , denoted M̃ , to have sections

M̃(U) = { s : U →
∐
p∈U

Mp | (i) and (ii) }

where
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(i) s(p) ∈Mp for all p and
(ii) for each p ∈ U , there exists a neighborhood V ⊆ U and m ∈ M , f ∈ A, such that for

all q ∈ V we have f /∈ q and s(q) = m/f .

That is, the sections of M̃ are the locally constant functions from U to the disjoint union of
the localizations Mp. The restriction maps are taken to be the obvious ones, which restrict
s to a smaller neighborhood V ⊆ U .

While not a definition, it’s worth mentioning here that M̃ is an OX -module, its stalks

are localizations (M̃)p = Mp, and its sections on distinguished opens are also localizations

M̃(D(f)) = Mf .
There’s a projective version of this, where instead X = ProjS• is a projective A-scheme

for A = S0 and S+ finitely generated. If M• is a (Z-)graded S•-module, we define the

associated sheaf M̃• as follows.

For f homogeneous of postive degree, Spec((S•)f )0 ⊂ ProjS•, so we take M̃•|Spec((S•)f )0
to be the sheaf on Spec((S•)f )0 associated to ((M•)f )0. One then needs to check that these
glue appropriately, e.g. by taking generators (f1, . . . , fr) = S+ and verifying that the cocycle
condition is satisfied on triple intersections.

As one might expect, if p is a homogeneous prime of S•, we have the stalk (M̃•)p =
((M•)p)0, which we can see by further localizing ((M•)f )0 for f /∈ p.

sheaf cohomology: Let X be a topological space. The sheaf cohomology functors Hi(X, ·),
from the category of sheaves of abelian groups on X to the category of abelian groups, are
the right derived functors of the global section functor Γ(X, ·). For a sheaf of abelian groups
F on X, we call Hi(X,F ) the ith cohomology groups of F .

sheaf hom: Let F ,G be OX -modules. We define the sheaf hom, denoted H omOX
(F ,G ), to be

the sheaf given by

U 7→ HomOX |U (F |U ,G |U ).

This is also an OX -module.

sheaf of ideals: A sheaf of ideals on X is a subsheaf of OX , in that I (U) ⊆ OX(U) is an ideal
for all open U ⊆ X.

sheaf of OX-modules: Let (X,OX) be a scheme. A sheaf of OX-modules (or just an OX -
module) is a sheaf of abelian groups F on X, such that for every open U ⊆ X, F (U) is
an OX(U)-module. Moreover, the module structure is compatible with restriction, in that
whenever V ⊆ U we have a commutative diagram

OX(U)×F (U) F (U)

OX(V )×F (V ) F (V )

res× res res

where the horizontal maps are the module map.
A morphism of OX -modules F → G is a morphism of (pre)sheaves such that each map on

sections F (U)→ G (U) is an OX(U)-module homomorphism. We let HomOX
(F ,G ) denote

the group of OX -module morphisms from F to G .
Kernels, cokernels, images, quotients, products, sums, limits, and colimits of OX -modules

naturally carry the structure of an OX -module. This allows us to discuss exactness of
sequences of OX -modules.

sheafification: Let F be a presheaf on X with values in C. The sheafification F+ of F is a
sheaf on X that is initial in the category of sheaves on X with maps from F . That is, given
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a sheaf G and a map F → G , there exists a unique map F+ → G which commutes with
the maps from F .

smooth: Let X be a k-scheme of pure dimension d. We say X is k-smooth of dimension d if
there exists a cover of X by open sets of the form Spec k[x1, . . . , xn]/(f1, . . . , fr) where the
Jacobian matrix has corank d at all points. Equivalently, X is k-smooth if the (co)tangent
sheaf ΩX/k is locally free of rank d.

A morphism of schemes X → Y is smooth of relative dimension n if there exist open
covers X = ∪Ui, Y = ∪Vi with π|Ui : Ui → Vi, such that Vi is SpecB, Ui is isomorphic to
an open subscheme of SpecB[x1, . . . , xn+r]/(f1, . . . , fr) (and π|Ui

is induced by the obvious
map of rings), and the determinant of the Jacobian matrix of the fi’s with respect to the
first r xi’s is invertible on Ui.

Alternatively, we could equivalently define π to be smooth of relative dimension n
if the cotangent sheaf Ωπ = ΩX/Y is locally finitely presented, flat of relative dimension n,
and locally free of rank n.

stalk: Given a sheaf F on a topological space X, the stalk at a point p ∈ X is the colimit

Fp = lim−→F (U)

where the colimit runs over all opens U containing p.
Of particular interest is the stalk of a point p in a scheme (X,OX), which we take to be

the stalk of the structure sheaf at p, OX,p. In the case where X = SpecA, this turns out to
be Ap, where here p is interpreted as a prime ideal of A.

support: The support of a sheaf of abelian groups F on X (or of rings or O-modules) is the set
of points p ∈ X for which the stalk is nonzero,

Supp F = { p ∈ X | Fp 6= 0 } .

If F is quasicoherent and finite type (e.g. locally free of finite rank), Supp F ⊆ X is a
closed subset. To see this, look on affine locally and show that the primes for which Fp = 0
correspond to primes not containing a certain ideal.

symmetric algebra: Let M be an A-module. The n-th symmetric power SymnM is the quo-
tient of TnM by the ideal generated by elements of the form (m1 ⊗ · · · ⊗mn) − (mσ(1) ⊗
· · · ⊗mσ(n)) where σ ∈ Sn is any permutation. We can also form a symmetric algebra
Sym•M , similarly to the tensor algebra which is a graded ring.

As one might suspect, Sym•M satisfies a universal property: if M → B is a linear map
and B is a commutative B-algebra, then we have a unique map Sym•M → B commuting
with the natural inclusion.

If F is a quasicoherent sheaf onX, we can define Symn F by looking locally: if F |SpecA '
M we define Symn F |SpecA = SymnM . One must check that this construction glues.

If M ' A⊕m is a free module of rank m, we have Symn(Am) ' A(m−n−1
n ). This can be

seen by, e.g. computing the dimension of the kernel TnAm → SymnAm. If F is a locally
free sheaf of rank m, this implies Symn F has rank

(
m−n−1

n

)
.

If s ∈ Γ(X,F ) the support of s is the set of p ∈ X for which sp 6= 0 in the stalk Fp.

tangent space: The Zariski cotangent space of a local ring (A,m) is defined to be the quotient

m/m2. This is a vector space over the field A/m. The dual vector space
(
m/m2

)∨
=

HomA/m(m/m2, A/m) is called the Zariski tangent space of (A,m).
If X is a scheme, the Zariski cotangent space at p ∈ X, denoted T∨X,p, is the Zariski

cotangent space of OX,p, i.e. mp/m
2
p as an OX,p/mp = κ(p) vector space. Similarly, TX,p is
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the dual of T∨X,p. Elements of T∨X,p are called differentials or cotangent vectors, while
elements of TX,p are called tangent vectors.

(co)tangent sheaf: Let X → Y be a map of schemes. Let δ : X ↪→ X ×Y X, which is always a
locally closed embedding. We define the cotangent sheaf ΩX/Y to be the conormal sheaf
of the diagonal,

ΩX/Y = N ∨
X/X×YX

.

One checks that affine locally, ΩX/Y agrees with the module of differentials associated with
the appropriate ring map.

As one might expect, the tangent sheaf TX/Y is taken to be the dual

TX/Y = Ω∨X/Y .

tensor algebra: Let M be an A-module. The n-th tensor algebra TnM is defined to be the
n-fold tensor product of M over A with itelf, M⊗n. Setting T 0M = A, we form a graded
ring T •M , where multiplication is defined in the obvious way from TnM×T pM → Tn+pM ,
sending ((m1⊗· · ·⊗mn), (m′1⊗· · ·⊗m′p) 7→ (m1⊗· · ·⊗mn⊗m′1⊗· · ·⊗m′p) and extending
linearly. Note this algebra is most certainly not commutative!
T •M satisfies a universal property similar to that of a free object. If M → B is any

linear map to an A-algebra B, there is a unique map T •M → B which commutes with the
inclusion M ↪→ T •M .

If F is a quasicoherent sheaf onX, we can define TnF by looking locally: if F |SpecA 'M
we define TnF |SpecA = TnM . One must check that this construction glues.

If M ' A⊕m is a free module of rank m, we have Tn(Am) ' Amn. To see this, take
e1, . . . , em a basis for A and see that ei1 ⊗ · · · ⊗ ein is a basis for Tn(Am). If F is a locally
free sheaf of rank m, this implies TnF has rank mn.

tensor product: Let B → A be a map of rings and M a B-module. Any A-module naturally has
a B-module structure, but to endow M with an A-module structure, we tensor M ⊗B A.
The functor · ⊗B A is a covariant functor from B-modules to A-modules.

If M and N are A-modules, the tensor product M ⊗A N satisfies a universal property:
for any A-bilinear map M ×N → T where T is an A-modules, there exists a unique map of
A-modules from the tensor product to T .

M ×N M ⊗A N

T

To show such an object exists, we construct it explictly as the A-linear combinations of
simple tensors m⊗ n, where we identify

(a1m1 + a2m2)⊗ n = a1(m1 ⊗ n) + a2(m2 ⊗ n),

m⊗ (b1n1 + b2n2) = b1(m⊗ n1) + b2(m⊗ n2),

a(m⊗ n) = (am)⊗ n = m⊗ (an).

One can check this satisfies the universal property, with the map (m,n) 7→ m⊗ n.
Generally tensor functors are right exact and left adjoints to an appropriate Hom functor.
Given sheaves of OX -modules F and G , we define the tensor product F ⊗OX

G to be
the sheaf associated to the presheaf

U 7→ F (U)⊗OX(U) G (U).

We need to sheafify because tensoring is right exact, and does not (always) preserve the
necessary limits in the sheaf axioms.



LIST OF ALGEBRAIC GEOMETRY DEFINITIONS AND THEOREMS 23

tor: If M is an A-module, the Tor functors, TorAi (M, ·) for i ≥ 0 are the left derived functors

of the right exact functor M ⊗A ·. TorAi (M, ·) itself is left exact and induces a long exact
sequence; if 0→ N ′ → N → N ′′ → 0 is a short exact sequence of A-modules then

· · · → Tori+1
A (M,N ′′)→ ToriA(M,N ′)→ ToriA(M,N)→ ToriA(M,N ′′)→ Tori−1A (M,N ′)→ · · ·

is a long exact sequence, terminating in

Tor1A(M,N ′′)→M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0

i.e. Tor0A(M,N) 'M ⊗A N .

TorAi (M,N) vanishes for all N if and only if TorAi (M,N) vanishes for all i > 0 and N ,
and these are equivalent to M being flat. We can compute the Tor functors via free, or
indeed projective module resolutions.

total quotient ring: Let A be a ring and S the multiplicative subset of elements which are not
zerodivisors. The total quotient ring of A is the localization S−1A. This is the “closest
thing to the field of fractions” when A is not an integral domain.

Let X be a scheme. For each open U ⊆ X, let S(U) denote the multiplicative subset of
Γ(U,OX) consisting of elements which are not zerodivisors in OX,p for all p ∈ U . Then the
sheaf associated to the presheaf U 7→ S(U)−1Γ(U,OX) is called the sheaf of total quotient
rings of OX . This is an analog of the function field for an integral scheme.

twist: A twist of a variety X/k is another variety T/k such that they become isomorphic upon
base extension, i.e. X ×k K ' T ×k K for a field extension K/k.

A prototypical example is a quadratic twist of an elliptic curve E : y2 = f(x). The twist

is given by Ed : dy2 = f(x). If
√
d /∈ k then E 6' Ed, but they are always isomorphic over

k(
√
d) (or k).

twisting sheaf: Consider the projective space Pmk (or PmA ). We may define a sheaf OPm
k

(n) by
taking it to be the degree n functions on each of the usual affine patches. The transition
functions are then multiplying appropriately by n-th powers. These glue into a sheaf called
OPm

k
(n). In particular, OPm

k
(1) is sometimes called the twisting sheaf.

It can be shown that OPm
k

(n) ⊗OPm
k

OPm
k

(n′) = OPm
k

(n + n′). When k is a field, all line

bundles on Pmk arise in this way, so we have Z ' PicPmk . Moreover, for n ≥ 0, the global
sections of OPm

k
(n) correspond to n-forms, allowing us to easily compute the dimension

Γ(Pmk ,OPm
k

(n)) =

(
m+ n

n

)
.

If X ↪→ Pmk is a projective variety, we define OX(n) = OX ⊗OPm
k

OPm
k

(n), the pullback of

O(n) to X.
This can be further generalized by considering a Cartier divisor D on X. We define O(D)

to be the dual of the (invertible) ideal sheaf of D.

universal: The δ-functor T = (T i) : A → B is universal if for any other δ-functor T ′ = (T ′i) and
any morphism f0 : T 0 → T ′0, there exist unique f i : T i → T ′i for all i which commute with
both sets of δ maps for all exact sequences.

unramified: If π : X → Y is a map of schemes, and Ωπ = ΩX/Y is the sheaf of relative differentials,
we say π is formally unramified if Ωπ = 0. We say π is unramified if it is formally
unramified and locally of finite type.

The ramification locus is the support of Ωπ, which is a subset of X. The branch locus
is the image in Y of the ramification locus.
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valuation: Let K be a field. A valuation on K with values in a totally ordered abelian group G is
a group homomorphism v : K−0→ G satisfying v(x+y) ≥ min(v(x), v(y)). The valuation
ring is the subring of K consisting of elements with nonnegative valuation and zero. We
call a ring R a valuation ring if R is the valuation ring for a valuation v on fracR, and we
say a valuation is discrete if G = Z.

If Y is a prime divisor of X, with generic point η then the stalk OX,η is a discrete valuation
ring with quotient field K, the function field of X. We call vY the valuation of Y .

vanishing scheme: Given a scheme Y and a global section s ∈ Γ(Y,OY ), the vanishing scheme
V (s) is a closed subscheme. On an affine open SpecB ⊆ Y , it corresponds to SpecB/(sB)
where sB = s|SpecB . Given a set S of global sections, we can take V (S) to be defined by
SpecB/(SB) on an affine open.

variety: An affine scheme over a field k which is reduced and of finite type is called an affine
k-variety. A reduced (quasi)projective k-scheme is called a (quasi)projective k-variety.

More generally, a variety over a field k is defined to be a reduced, separeted scheme
of finite type over k. Note that affine schemes and (quasi)projective schemes are always
separated, so this additional hypothesis is not necessary.

vector bundle: A vector bundle is another name for a locally free sheaf. Classically, a vector
bundle on X is a topological space with a map to X such that the fibers are vector spaces,
“continuously varying” as we move along X. The trivial vector bundle is X × V , and a
general vector bundle is locally trivial, in that on some open cover it is isomorphic to a
trivial bundle. As an nontrivial example, think of the Möbius strip as a rank one vector
bundle on the circle — it is not globally trivial because it has a twist, but it is trivial if we
remove a point on the circle.

Veronese: Given Pn and the (very ample) line bundle O(d), we have an embedding Pn ↪→ PN given
by |O(d)|, which we call a Veronese embedding. In particular,

N = h0(Pn,O(d))− 1 =

(
n+ d

n

)
− 1.

In the special case of n = 1, the image curve is called a rational normal curve. As in that
case, writing down a basis for H0(Pn,O(d)) can give explicit coordinates for the map.

Weil divisor: Let X be a scheme satisfying (∗). A prime divisor on X is a closed integral
subscheme Y of codimension one. A Weil divisor is an element of the free abelian group
on prime divisors, DivX. That is, a Weil divisor D is a formal integer linear combination
of prime divisors,

∑
niYi.

Vakil takes a Weil divisor to mean a (formal) Z-linear combination of irreducible closed
subsets of codimension 1 on a Noetherian scheme X. Note this doesn’t use the full strength
of condition (*), in that it doesn’t assume integrality, separatedness, or regularity, though
he quickly adds back in reducedness and regularity.

Zariski sheaf: A contravariant functor F : C → Sch is a Zariski sheaf if for any scheme Y , the
assignment U 7→ F (U) forms a sheaf on Y .

zero: Let X be a scheme with function field K and let Y be a prime divisor. We say f ∈ K× has
a zero at Y if vY (f) > 0, where vY is the valuation at Y .
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2. Results and discussions

Adjunction formula: Let X be a smooth variety over k and Z a smooth (closed) subvariety. Then
we can compute the canonical bundle KZ by

KZ ' KX |Z ⊗ det NZ/X .

Furthermore, if Z has codimension 1 (i.e. a divisor) then we have NZ/X ' OX(Z)|Z , so this
is sometimes written

KZ ' (KX ⊗ OX(Z)) |Z .
In the notation of divisors, we have

KZ = (KX + Z)|Z
Proof sketch. Use the conormal exact sequence first, which is exact on the left by smoothness.

0→ N ∨
Z/X → i∗ΩX/k → ΩZ/k → 0.

This induces an alternating product of determinants

det N ∨
Z/X ⊗

(
det i∗ΩX/k

)
⊗ det ΩZ/k ' OZ .

Dualizing appropriately and using the definition of K , we have

KZ ' KX |Z ⊗ det NZ/X .

�

Affine communication lemma: Let P be a property of affine open subsets of a scheme X. Sup-
pose

(i) every affine open SpecA ⊆ X that has P implies SpecAf ⊆ X also has P and
(ii) if A = (f1, . . . , fn) and SpecAfi ⊆ X has P for all i then SpecA ⊆ X also has P .
Then if X = ∪SpecAi where SpecAi has P for all i, then every affine open SpecA ⊆ X has
P as well. The proof involves intersecting SpecA with SpecAi and covering by affine opens
simultaneously distinguished in both.

Morally, properties P satisfying (i) and (ii) above need only be checked on an open cover.
Here are some examples of affine local conditions:
• Noetherianness (c.f. Proposition 5.3.3),
• finite typeness (c.f. Proposition 5.3.3),
• reducedness (and other stalk-local conditions)

A nonexample of such a property is integrality. For example, take Spec(A × B) where A
and B are arbitrary integral domains. This is a disjoint union (not irreducible) but can be
covered by the integral schemes SpecA and SpecB.

Affine reduction iff affine: Let X be a scheme. Then X is affine if and only if the reduced
subscheme Xred is affine.

Proof. If X = SpecA, then the reduction Xred = SpecA/N , where N is the ideal of nilpo-
tents. There is surprising content in the converse.

Suppose Xred is affine. Recall we have a closed embedding i : Xred ↪→ X, with the ideal
sheaf of Xred given by N , the ideal of nilpotents. Let F be a coherent sheaf of ideals on
X. We have a filtration

F ⊃ FN ⊃ FN 2 ⊃ · · · .
Notice that for any i ≥ 0 we have

0→ FN i+1 ↪→ FN i � FN i/FN i+1 → 0,

where the rightmost sheaf has the natural structure of an OX/N ' OXred
-module. Since

H1(Xred,FN i/FN i+1) = 0 by Serre’s cohomological criterion for affineness, it is enough
to prove that H1(X,FN i) = 0 for some i, as then we have H1(X,FN i−1) = 0, since it’s
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sandwiched between two vanishing H1’s. Going up the filtration, we have H1(X,F ) = 0,
and again by Serre’s criterion we have X is affine.

To show that FN i has vanishing H1 for some i, we argue instead that N i = 0 for i� 0.
Covering X by finitely many affine opens SpecA, we see that N|SpecA ' N , where N is
the nilradical of A. Let’s further assume A is Noetherian. In the local ring Ap, where we
know ∩∞i=1p

i = 0, we have ∩∞i=1p
i = 0 and the proof of this fact shows that pi = 0 for some

i� 0. Since SpecA has finitely many irreducible components (Noetherian), this means that
we can take n to be the maximum such i for finitely many generic points. Then for f ∈ Nn,
we have fn vanishes in all local rings, so it must be that f = 0, and hence Nn = 0. Doing
this for each of the affine opens covering X, we have N i = 0 for some i� 0, and as desired,
FN i = 0 as well, allowing us to use the previous argument. �

Bezout’s theorem: Let X ∈ Pnk be a projective scheme of degree degX and H ⊂ Pnk a hypersurface
of degree d not containing a component of X. The (scheme theoretic) intersection H ∩ X
has degree

deg(H ∩X) = d(degX).

In the special case of curves in P2 (here curves are hypersurfaces) we have the classical
result that the number of intersection points of curves C1 and C2 which don’t overlap on an
irreducible component is (degC1)(degC2).

One way to prove this is with Hilbert polynomials. The key insight is that the ideal sheaf
of H ∩X in X is OX(−d). Another is to intersect X with dimX many general hyperplanes
and count intersection points to define degree, then use Bertini’s theorem to make sense of
this.

Closed embedding exact sequence of sheaves: Let i : Z → X be a closed embedding of schemes
with ideal sheaf I . We have an exact sequence of OX -modules

0→ I → OX → i∗OZ → 0.

In the special case where X is a Noetherian scheme which is regular in codimension one
(and possibly normal too) and Z is closed of codimension one — i.e. a divisor D — then we
have I = O(−D) = O(D)∨, giving us the exact sequence

0→ OX(−D)→ OX → OD → 0.

Tensoring this exact sequence is often useful.

Conormal exact sequence: (affine version) Let B → A → A/I be maps of rings and ΩA/B the
module of differentials. We can extend the cotangent exact sequence to the left (recognizing
that Ω(A/I)/A = 0 by

I/I2 → ΩA/B ⊗B A/I → Ω(A/I)/B → 0,

where the leftmost map sends i+ I2 7→ di⊗ 1, and extending (A/I)-linearly.
(global version) If i : Z ↪→ X is a closed embedding and π : X → Y , then we have an

exact sequence of sheaves on Z,

N ∨
Z/X → i∗ΩZ/Y → ΩZ/X → 0.

Note the discrepancy with the subscripts of the cotangent exact sequence.

Cotangent exact sequence: (affine version) Let C → B → A be maps of rings and ΩA/B the
module of A-differentials. We have a right-exact sequence

A⊗B ΩB/C → ΩA/C → ΩA/B → 0.
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(global version) Let X → Y → Z be morphisms of schemes and ΩX/Y , etc. the module
of relative differentials, i.e. the co(co)tangent sheaf. We have a right-exact sequence

π∗ΩY/Z → ΩX/Z → ΩX/Y → 0

where π denotes the map X → Y .

Criteria for basepoint free and very ample on curves: Let X be a projective regular integral
curve over an algebraically closed field k = k. We record three observations:
(i) Twisting by a point drops the dimension by ≤ 1: Let L be a line bundle on X and p a

closed point. Then

h0(X,L )− h0(X,L (−p)) ≤ 1.

(ii) Criteria for basepoint freeness: A line bundle L on X is basepoint free if and only if
for all closed points p ∈ X, the inequality in (i) is an equality,

h0(X,L )− h0(X,L (−p)) = 1.

(iii) Criteria for very ampleness: A line bundle L on X is very ample if and only if for all
closed points p, q ∈ X, not necessarily distinct, the dimension drops maximally,

h0(X,L )− h0(X,L (−p− q)) = 2.

Proof sketch. For (i), we use the closed subscheme exact sequence

0→ OX(−p)→ OX → OX |p → 0,

suitably twisted by L

0→ L (−p)→ L → L |p → 0.

This gives the LES in cohomology,

0→ H0(X,L(−p))→ H0(X,L )→ H0(p,L |p)→ · · · .

Since p is a degree one point and L is locally free, we have L |p ' Op, so H0(p,L |p) = k.
Therefore the map H0(X,L )→ H0(p,L |p) is either surjective, in which case the dimension
drops by 1, or it’s the zero map, in which case the dimensions are equal.

For (ii) we interpret H0(X,L (−p)) as the sections of H0(X,L ) which vanish at p. If
the dimension always drops by one, then we have a section not vanishing at p. If this occurs
for all p, then L is basepoint free. Conversely, basepoint freeness implies the existence of
such a section for each p, so the dimension must drop by one.

For (iii), we will show very ampleness by arguing that the map associated to the complete
linear series |L | is injective on both points and tangent vectors (see Theorem 19.1.1). For
injectivity on points, consider distinct points p, q. The dimension of sections drops as we
go from L (−q) to L (−p− q), indicating the existence of a section vanishing on q, but not
on p. Hence there is a hyperplane in Pdim |L |−1 containing (the image of) q but not p. In
particular, the map is injective on points.

To see injectivity on tangent vectors consider a closed point p. Dualizing, it suffices to
show that the map on cotangent vectors is surjective. Since ΩX/k is one dimensional, we

need only see that the map is nonzero. Recall the (Zariski) cotangent space is mp/m
2
p, so we

need to find a section vanishing at p to degree precisely one. However, this exists because

h0(X,L (−p))− h0(X,L (−2p)) = 1.

Thus such an L is very ample. Conversely, very ample L implies (i) and (ii), and because
it separates points and tangent vectors, we find (iii) holds. �
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Dimensions of Γ (and Hi) for OPn : Let Pnk be projective A-space and OPn
k
(m) = O(m). Then

we can compute the dimensions of the (Cech) cohomology groups Hi(Pnk ,O(m)) as follows:

dimkH
0(Pnk ,O(m)) =

(
m+ n

m

)
=

(
m+ n

n

)
,

dimkH
i(Pnk ,O(m)) = 0, 0 < i < n

dimkH
n(Pnk ,O(m)) =

(
−m− 1

−n−m− 1

)
=

(
−m− 1

n

)
, m+ 1 ≤ −n

dimkH
j(Pnk ,O(m)) = 0, j > n.

Note that the above also work over a ring A in place of k, where instead of dimension as a
k-vector space, we take the rank of H• as a free A-module.

The key idea here is to interpret sections of O(m) as homogeneous degree m polynomials.
See e.g. the discussion in §14.1 of Vakil. This immediately allows us to compute the dimen-
sion of H0 by counting degree m monomials in n + 1 variables. If Ui = D(xi) is the usual
affine patch, then Γ(Ui,O(m)) may be identified with the degree m piece of k[x0, . . . , xn,

1
xi

]

(which in turn has a natural identification with k[x0/i, . . . , x̂i/i, . . . , xn/i]). Moreover, if
I ⊂ {0, . . . , n} the restriction maps Γ(UI ,O(m))→ Γ(UJ ,O(m)) with I ⊂ J are interpreted
as natural inclusions of polynomials where xi appears with nonnegative exponent for all
i /∈ I.

Now we have the Cech complex of ⊕O(m), where taking the degree m piece gives the
Cech complex of O(m).

0→ k[x0, . . . , xn,
1

x0
]× · · · × k[x0, . . . , xn,

1

xn
]→ k[x0, . . . , xn,

1

x0
,

1

x1
]× · · · k[x0, . . . , xn,

1

xn−1
,

1

xn
]→ · · ·

· · · → k[x0, . . . , xn,
1

x0
, . . . ,

1

xn−1
]× · · · × k[x0, . . . , xn,

1

x1
, . . . ,

1

xn
]→ k[x0, . . . , xn,

1

x0
, . . . ,

1

xn
]→ 0.

We can more neatly abbreviate this

0→
∏

Ai →
∏

Aij → · · · →
∏

#I=n

AI → A0...n → 0,

and extend it to

0→ A→
∏

Ai →
∏

Aij → · · · →
∏

#I=n

AI → A0...n → 0.

Note that in the above sequence, exactness at the first two places is equivalent to the
computation of H0. At each place thereafter, taking kernel mod image computes the desired
cohomology groups.

Importantly, these inclusions preserve both degree and multidegree (i.e. degree of each
factor xi), allowing us to compute the cohomology monomial by monomial, following the
strategy outlined for P2 in §18.3 of Vakil. We note here that this also shows the final
assertion, that Hj = 0 for j > n (in other words, by affine cover vanishing, since Pn is
covered by n+ 1 affine opens).

(all negative) Let’s consider monomials xa00 · · ·xann where all ai < 0. The exact sequence
above becomes

0→ 0H0 →
∏

0i → · · ·
∏

#I=n

0I → A0...n → 0.

It’s easy to see that the sequence is exact everywhere except the final, n-th place.
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(one nonnegative) Consider now the case that all ai < 0 except for an. The sequence
becomes

0→ 0H0 →
∏

0i → · · · →
∏

#I=n−1

0I → A0...(n−1) ×
∏

#I=n,n∈I

0I → A0...n → 0.

Since the second to rightmost map is the inclusion A0...(n−1) → A0...n, we have exactness
in the (n − 1)-th place. This is seen to surject for monomials of the stated form, giving
exactness of the entire sequence. Hence there is no cohomology here!

(at least one negative) Suppose a0 < 0. The strategy above essentially works to show that
the sequence is exact once again, though we have to take some care with the signs of the
maps. For concreteness, consider a monomial where a0, . . . , ak < 0 and ak+1, . . . , an ≥ 0.
It’s straightforward to see that the leftmost map of

A0...k →
∏

k<i≤n

A0...ki →
∏

k<i<j≤n

A0...kij

is an injection, hence we have exactness in the k-th place. For exactness in the middle, we
see that a (tuple of) monomial(s) can be mapped to zero if and only if it’s in the image of
A0...k. This argument continues to extend to the right, so we see the full sequence is exact
in this case.

(all nonnegative) Finally, suppose ai ≥ 0 for all i. We can give a short exact sequence of
complexes,

0 0 An A0n × · · ·A(n−1)n · · · A0...n 0

0 AH0 A0 ×An−1 × · · · ×An
∏
Aij · · · A0...n 0

0 AH0 A0 × · · · ×An−1
∏
i,j 6=nAij · · · 0 0.

The top row is exact, by the an < 0 case. The bottom row is exact by essentially the
same argument — just think about what has to happen for all these maps to be exact. In
particular, all cohomology groups of the top and bottom complexes vanish! The long exact
sequence in cohomology induced by this SES of complexes implies that the middle row must
also be exact.

All of this computation shows that Hi(PnkO(m)) = 0 for 0 < i < n, since the Cech
complex has no cohomology here. The n-th (final) Cech cohomology vanishes unless we’re
in the “all negative case.” This means that for ⊕O(m), the Cech cohomology group is
x−10 · · ·x−1n k[x−10 , . . . , x−1n ], as this contains the only monomials which can appear. Thus the
“degree m piece” corresponds to the degree −m − n − 1 polynomials in the x−1i , giving a

dimension count of
( −m−1
−m−n−1

)
, which makes sense only when m ≤ −n− 1.

Finiteness of zeros and poles: Suppose X is an integral Noetherian scheme. Then
• any rational function t ∈ K(X)× has finitely many zeros and poles (i.e. it vanishes on

finitely many codimension one primes).
• If X is regular in codimension one, div t is well defined.
• If X is normal, having no poles is equivalent to being a regular function.

Proof. For the first statement, we can check on an affine cover of X by SpecA where A is a
Noetherian integral domain. Suppose t = f

g for f, g ∈ A. It suffices to check that f (hence

also g) is contained in finitely many codimension one primes. To see this, we look at A/(f),
which is Noetherian and whose minimal prime ideals consist of the codimension one primes
of A containing f (since f 6= 0).
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Thus we need only show Noetherian rings have finitely many minimal prime ideals. This
can be done geometrically by recognizing that a minimal prime ideal corresponds to a max-
imal irreducible closed subset of SpecA, i.e. an irreducible component. Since we also know
SpecA is Noetherian as a topological space, it suffices to show Noetherian topological spaces
have finitely many irreducible components. If X has a countably infinite collection of irre-
ducible components X1, X2, . . . then we take

X ⊇ ∪i≥1Xi ) ∪i≥2Xi ) · · ·

which contradicts the Noetherianness.
Hence our Noetherian ring A has finitely many minimal primes, which means that any

function f vanishes on finitely many codimension one primes. Thus t = f
g has finitely many

zeros and poles.
To make sense of the order of zeros and poles, we use the regular in codimension one

condition. This ensures Ap is a regular local ring when p is height one, which implies Ap

is a DVR (see e.g. §12.5), hence the order of vanishing of a rational function t at p is well
defined by the valuation. Thus we can take

div t =
∑

p codim. 1

vp(t)p.

Suppose X is normal, so the stalks If t has no poles, we claim it is regular. Again, we
can see this on the level of affine schemes, using the fact that for a Noetherian integrally
closed domain A, we have A = ∩Ap, where the intersection is taken over the codimension
one primes. If t has no poles, then t ∈ Ap for all p, hence in A. �

FHHF theorem: Let F : A → B be an additive functor of abelian categories. Suppose C• is a
complex in A (so F (C•) is a complex in B) and use Hi(C•) to denote the i-th cohomology.
Then

(i) If F is right exact then there is a natural morphism

F
(
Hi (C•)

)
→ Hi (F (C•)) .

(ii) If F is left exact then there is a natural morphism the other way

F
(
Hi (C•)

)
← Hi (F (C•)) .

(iii) If F is exact then the natural morphism(s) from (i) and (ii) are isomomorphisms

F
(
Hi (C•)

)
' Hi (F (C•)) .

Proof sketch. We will give the idea of (ii) here. The proof of (i) is analogous after switching
some arrows. (iii) follows from (i) and (ii), as we will see.

As Hi(C•) = ker δi/ im δi−1 we have

0→ im δi−1 → ker δi → Hi → 0.

Applying F , we see

0→ F
(
im δi−1

)
→ F

(
ker δi

)
→ FHi.

On the other hand, we have the natural exact sequence in B given by

0→ imFδi−1 → kerFδi → HiF → 0.

We need a quick intermediate: a natural map (a monomorphism in fact) imFf → F (im f)
for any map f in A when F is left exact. In fact, it’s enough to observe a natural map
cokerF (f)→ F (coker f), by
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F (coker f)

F (A) F (B) cokerF (f).
f

F (c◦f)=0
c

Thus we have natural maps

imF (f) = ker(cokerF (f))→ ker(F (cokerF )) ' F (ker coker f) = F (im f)

by left exactness — F commutes with kernels.
This gives the diagram below, inducing the dashed line by universal properties, completing

the proof of (ii).

0 imFδi−1 kerFδi HiF 0

0 F
(
im δi−1

)
F
(
ker δi

)
FHi

=

To show (i), do the same thing, only using the sequence

0→ Hi → coker δi−1 → im δi → 0

and applying the right exact functor. Similarly, we’ll need to argue that F (im δ)→ imF (δ).
If F is exact, it is both left and right exact, and hence commutes with kernels and

cokernels. However, this means F (ker δi) = kerF (δi) and F (im δi−1) = imF (δi−1) and
finally

FHi = F (ker δi/ im δi−1) = F (ker δi)/F (im δi−1) = kerF (δi)/ imF (δi−1) = HiF

where “=” is used to indicate “unique isomorphism.” �

Finite morphisms: There are several nice properties of finite morphisms. Below, π : X → Y is a
finite morphism.
• finite implies projective (implies proper)
• finite = integral + finite type
• finite implies quasifinite
• finite = proper + quasifinite

Proof. We need to show that X = Proj S• for some quasicoherent sheaf of Y -algebras.
Ultimately, this boils down to the affine case: showing that a finite B-algebra A is in fact
projective. To see this, let S• be given by S0 = B, S1 = A, and Sn = A for n > 1. The
multiplication is given by multiplication in A, and this is clearly finitely generated as a
B-module in degree 1.

To check SpecA ' ProjB S•, we look at the affine opens Spec((S•)f )0 for f ∈ A considered
as degree n; in fact we can assume n = 1. The ring ((S•)f )0 is generated by elements of
the form g/fk where g ∈ A has degree k. We see that two such elements being equal is the
same as them being equal in Af , so ProjS• is covered by affine opens that are isomorphic
to distinguished opens in SpecA, hence they are isomorphic.

We have seen projective implies proper, so we have finite morphisms are proper.
For finite is integral and finite type, we first observe that finite trivially implies finite type.

Integrality follows from seeing that if B → A is a finite map of algebras, it is an integral
one. The converse comes from using finite type to give algebra generators a1, . . . , an, and
recognize that integrality implies a (finite) power basis of the ai’s generates A as a B-module.

For finite implies quasifinite, consider a point q ∈ SpecB ⊆ Y , i.e. a map Specκ(q)→ Y
coming from B → Bq/q. Since finite morphisms are affine, the preimage of SpecB is
SpecA ⊆ X and we have that the fiber is precisely

π−1(q) = SpecA⊗B Bq/q.
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Now since A ⊗B Bq/q is finitely generated as a κ(q) vector space, we have reduced to the
case B = k a field and A a finite k-algebra. Since A is Noetherian (rings are Noetherian and
finitely generated modules are Noetherian) SpecA has finitely many irreducible components,
i.e. it’s covered by SpecAi for integral domains Ai.

If A is an integral domain and a finite k-algebra, it is a field because if f 6= 0 then the
multiplication by f map is an injection A → A of k-modules, hence surjective by linear
algebra, giving an inverse. Thus A is a field and has only one prime. �

Grothendieck’s vanishing theorem: Let X be a scheme of dimension n. Then

Hi(X,F ) = 0

for all i > n and quasicoherent F on X.

Proof idea (projective case). Use affine cover cohomology vanishing. Find n + 1 hypersur-
faces in Pn whose intersections miss X, thus X is contained in the union of n + 1 D(f)’s.
Closed embeddings are affine, so the preimages of these are affine and cover X. Thus the
cohomology vanishes for all i ≥ n+ 1. �

Integral = reduced + irreducible: X is integral if and only if X is reduced and irreducible.
( =⇒ ) Suppose X is integral. Then OX(U) is an integral domain for all U . In particular,

all rings of sections are reduced, so X is reduced. Suppose X is reducible. Then X = Z1∪Z1

for nonempty sets Zi. Assume pi ∈ Zi−Zj , and pi ∈ SpecAi for affine opens in X. Moreover,
we can assume SpecAi∩Zj = ∅. But then SpecAi are disjoint, so OX(SpecA1∪SpecA2) =
A1×A2, which is only an integral domain if one of them is the zero ring (it isn’t because of
nonemptyness!).

( ⇐= ) Suppose X is reduced and irreducible. Let’s do the affine case first. Suppose
f, g ∈ A such that fg = 0. Then V (fg) = V (f) ∪ V (g) = SpecA. By irreducibility, one of
V (f) or V (g) is zero, so assume it’s f . Then f is nilpotent, but by reducedness, we have
f = 0, therefore A is an integral domain.

For the general case, we’ll need to cover X by affine opens SpecAi. If f, g ∈ Γ(X,OX)
with restrictions fi, gi, suppose fg = 0, which implies figi = 0. By the previous paragraph
(and the observation that a dense open set of an irreducible scheme is irreducible) we have
figi = 0 =⇒ fi = 0 or gi = 0. If fi, gj 6= 0 for some i, j, then we have V (f) ∪ V (g) = X
is a reduction. Conclude f (or g) must be zero, hence OX(X) is an integral domain, and
hence OX(U) is for all U .

Lying over, going up, going down: This flavor of result relates primes on either side of ring
maps. These are often useful in proving things about dimension.
• (lying over) Suppose φ : B → A is an integral extension of rings. Then for all primes
q ⊂ B, there exists a prime p ⊂ A such that p ∩B = q, i.e. p “lies over” q.

Geometrically, this is saying that SpecA → SpecB is surjective, because the image of
p ∈ SpecA is precisely its preimage under φ, which is intersection with B since the map
is an inclusion of rings.

• (going up) Suppose φ : B → A is an integral map of rings (not necessarily an extension).
Then if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain in B and p1 ⊂ p2 ⊂ · · · ⊂ pm is a chain in A with
pi lying over qi, the chain upstairs can be extended to pn lying over qn.

We are “going up” in the sense that we are extending the chain of primes in A lying
over those in B in the upward direction.

• (going down) Suppose φ : B ↪→ A is a finite extension of integral domains with B inte-
grally closed. Given a chain q ⊂ q′ in B and a prime p′ lying over q′, there exists p ⊂ p′
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such that p lies over q.

Here we are “going down” by going the other way along the chain of inclusions.

Map of proper curves is constant or surjective: Let C,C ′ be proper irreducible curves over
k. Then any map C → C ′ over k is surjective or a constant map.

Proof idea. By “property P” arguments, such a map is proper, since C ′ is separated and
closed embeddings are proper. The image of C must be an irreducible closed subset, hence
either a closed point or all of C ′. �

Maps to Pn using line bundles: Let X be a k-scheme and V ⊆ Γ(X,L ) where L is a line
bundle on X. We could just as well take V ⊆ Γ(X,OX(D)) where D is a Weil divisor, if
they are well defined. Let dimV = n+ 1. In general, we have

X −B → PV,

where PV is the coordinate-free projectivization of V .
We’ll prove this with coordinates. Let s0, . . . , sn be a basis of sections and take B to be

the base locus, i.e. the scheme theoretic intersection of V (si). (If V is base point free we
may ignore this altogether.) We define

X −B → Pn, P 7→ [s0(P ) : · · · : sn(P )]

informally. More precisely, consider the open subscheme D(si) ⊆ X where si doesn’t vanish.
Then we have on any trivializing open subset U of X, D(si) → D(xi), where D(xi) is the
standard affine open patch of Pn. There is a natural map k[x0, . . . , xn]xi

→ Γ(D(si),OU )
sending xj 7→ sj , and thus we glue to obtain U → Pn. We can glue along the trivializing
open sets as well to get X −B → Pn.

Some other useful comments:
• If L (or D) is very ample, then |L | (or |D|) defines an embedding of X into Pn where

the image is a degree deg L (or degD) variety. In this case, L is the pullback of O(1)
along the embedding.

• If X is a curve and dimV = 2 then the induced map X → P1 has degree deg L (or
degD).

• In fact, all maps to Pn arise in this way, up to isomorphism (of the bundle and the
sections). To see this, given X → Pn, we pull back the n + 1 hyperplane sections to
si ∈ Γ(X,π∗O(1)) and check that the above construction gives back the map to Pn.

Nakayama’s lemma: There are several related results that go by the name “Nakayama’s lemma.”
Here are some of them. Unless otherwise noted, A denotes a ring, I an ideal of A, and M
an A-module.

(i) Suppose M is finitely generated and M = IM . Then there exists a ≡ 1 (mod I) such
that aM = 0. Equivalently, since a = 1+i for i ∈ I, we have (−i)m = m for all m ∈M .

(ii) Suppose I is contained in all maximal ideals (i.e. I ⊆ JacA) and M is finitely generated,
such that M = IM . Then M = 0.

(iii) Suppose I is contained in all maximal ideals (i.e. I ⊆ JacA) and M is finitely generated,
with a submodule N ⊆M . If N/IN →M/IM is a surjection, then M = N .

(iv) Suppose (A,m) is local, M is finitely generated, and (the images of) f1, . . . , fn ∈ M
generate M/mM as an A/m-vector space. Then the fi’s generate M as an A-module.

Proof. To prove (i), we can use the determinant trick. Let m1, . . . ,mn be generators.
Then mi =

∑
j aijmj for aij ∈ I. Thus (aij) times the vector (m1, . . . ,mn)T is precisely

(m1, . . . ,mn)T . Equivalently, I − (aij) induces the zero map M → M . Multiplying by the
adjoint matrix, we have det(I − (aij)) induces the zero map as well, but upon inspection we
see that the deteriminant comes out to an element of A which is 1 (mod I).
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For (ii), we need only recognize that a ≡ 1 (mod I) implies a ∈ A× when I is contained
in all maximal ideals. Since a ≡ 1 (mod m) for all maximal m, we have a /∈ m. All nonunits
are in a maximal ideal, so a is invertible, and hence M = 0.

For (iii) we leverage (ii) as follows. Let L be the cokernel of the inclusion M → N . Since
taking quotients is right exact (tensoring by A/I) we have an exact sequence

N/IN →M/IM → L/IL→ 0.

The fact that N/IN → M/IM is a surjection menas that L/IL = 0, i.e. L = IL. Since
L is finitely generated (it’s the quotient of a f.g. module) and I is contained in all maximal
ideals, by (ii) we have L = 0, so M = N .

(iv) is just (iii) applied to the case of N = 〈f1, . . . , fn〉 and I = m, which is trivially
contained in all maximal ideals. �

Pic Pnk ' Z: The Picard group of projective n-space Pnk is given by

PicPnk ' ClPnk ' Z.

Explicitly, this group is generated by the class of a hyperplane, or equivalently the line
bundle O(1).

Proof. First note that Pn is covered by copies of An, and k[x1, . . . , xn] is a UFD, so its stalks
are as well. Hence we are free to identify the Picard group with the Weil divisor class group.

Next we use the excision exact sequence,

0→ Z→ DivX → Div(X − Z)→ 0,

where Z is an irreducible codimension one subscheme (i.e. a prime divisor) and the map
sends 1 7→ Z. For this problem, we take X = Pn and Z to be a hyperplane isomorphic to
Pn−1 (the hyperplane at infinity, if you like). Quotienting by principal divisors, we have

Z→ ClPn → ClAn → 0.

Again, using that An ' Spec k[x1, . . . , xn] which is a UFD, the class group vanishes, so
Z � ClPn is a surjection. Thus the class of the hyperplane, [H] generates ClPn.

It remains to see that n[H] 6= 0 for all n > 0. Suppose nH = div t for t ∈ K(Pn)× and
n ≥ 0. Then since nH has nonnegative degree, t has no poles, and thus is regular. But
the only regular functions on Pn are the constants, which have degree zero (when nonzero).
Hence [nH] 6= 0 for n > 0, i.e. ClPn ' 〈[H]〉 ' Z.

It’s useful to identify [H] with the line bundle O(1), and thus [nH] with O(n). To see
this, consider the global section x0 of O(1). Its image in the standard affine patch Ui is 1
for i = 0 and x0/i for 0 < i ≤ n. Thus for i > 0, the image of x0 has a zero at the V (x0/i)
hyperplane, and we have div x0 = H. In fact, any two hyperplanes are linearly equivalent,
a fact we can realize by passing through div x0 = H0: if H is some other hyperplane, it is
given by the vanishing of a linear form s, and hence div s

x0
= H −H0 is principal. �

PicX isomorphic to H1(X,O×X): Let X be a quasicompact separated scheme (i.e. a scheme where
Cech cohomology makes sense). Then

PicX ' H1(X,O×X)

where O×X is the sheaf of abelian groups given by taking units: U 7→ Γ(U,OX)×.

Proof idea. Use Cech cohomology on some affine open cover X = ∪SpecAi, where the
intersection SpecAi ∩ SpecAj = SpecAij is affine. Giving a line bundle involves giving
transition functions, which will correspond to units in the rings Aij . Then show these units
sit in the kernel of the map in the Cech complex∏

A×ij →
∏

Aijk,
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giving a map

L 7→ H1(X,O×X).

Next, show that if these transition functions are coboundaries, i.e. in the image of
∏
A×i ,

then the original line bundle is trivial. Hence the map above is an isomorphism.
Note, this uses the fact that we can compute H1 via Cech cohomology, which is nontrivial

in this case since O×X is not a quasicoherent sheaf. However, we have now seen that PicX
maps to the Cech H1 for any open cover, so it has a map to the limit which must also
be an isomorphism. An exercise in Hartshorne (III.4.4) shows that derived functor H1 is
isomorphic to the limit of Cech H1’s, completing the proof. �

Properties of cohomology: Let X be a scheme. Given a quasicoherent OX -module F , recall
Hi(X,F ) is the i-th sheaf cohomology group, which we may compute via Cech cohomology
if X is quasicompact and separated.

(i) functoriality: Hi(X, ·) is a covariant functor from QCohX → Ab. If X is a scheme
over A then it is a functor QCohX → ModA. In particular, Hi(X,F ) is a vector space
for a scheme over a field.

(ii) H0 is global sections: For any sheaf F on X, we have H0(X,F ) = Γ(X,F ).

(iii) long exact sequence: Let 0 → F ′ → F → F ′′ → 0 be a short exact sequences of
sheaves on X. There is a long exact sequence in cohomology,

0→H0(X,F ′)→ H0(X,F )→ H0(X,F ′′)→ H1(X,F ′)→ H1(X,F )→ · · ·
· · · →Hn(X,F ′)→ Hn(X,F )→ Hn(X,F ′′)→ Hn+1(X,F ′)→ Hn+1(X,F )→ · · ·
(iv) contravariant in space: If π : X → Y is a map of schemes (possibly over a base) then

there are natural maps

Hi(Y, π∗F )→ Hi(X,F )

Hi(Y,G )→ Hi(X,π∗G ),

allowing us to reasonably say that Hi is “contravariant in the space.”

(v) affine morphisms: Suppose π : X → Y is an affine morphism. Then the natural map
of (iv) is an isomorphism

Hi(Y, π∗F )
∼−→ Hi(X,F ).

(vi) affine cover vanishing: Suppose X is covered by n affine open sets. Then

Hi(X,F ) = 0

for all i ≥ n. In particular, if X is affine then all higher cohomology vanishes for all
quasicoherent F .

(vii) Hi commutes with (filtered) colimits: Let X be an A-scheme. Then for a filtered
direct system Fj , we have

lim−→
j

Hi(X,Fj) ' Hi(X, lim−→
j

Fj).

In particular, cohomology commutes with direct sums

⊕jHi(X,Fj) ' Hi(X,⊕jFj).
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(viii) Dimensions of Γ (and Hi) for OPn : Consider Pnk . Then

h0(Pn,O(m)) =

(
m+ n

n

)
hn(Pn,O(m)) =

(
−m− 1

n

)
hi(Pn,O(m)) = 0 for all i 6= 0, n.

(ix) Hi finitely genereated: Let X be a projective A-scheme for a Noetherian ring A and
F a coherent sheaf on X. Then Hi(X,F ) is finitely generated for all i. In particular,
if A = k then Hi(X,F ) is a finite dimensional vector space over k.

(x) Serre vanishing: Let X be a projective A-scheme for a Noetherian ring A and F a
coherent sheaf on X. Then for m � 0, we have Hi(X,F (m)) = 0 for all i > 0. This
holds without Noetherian hypotheses as well.

(xi) base change: Let X be a quasicompact and separated over a field k. Then for any
field extension K/k, we have

Hi(X,F )⊗k K ' Hi(X ×k SpecK,F ⊗k K).

(xii) dimensional vanishing, aka. ??: Let X be a projective k-scheme. Then Hi(X,F ) =
0 for all i > dimX and any quasicoherent F .

(xiii) Serre’s cohomological criterion for affineness: X is affine if and only ifHi(X,F ) =
0 for all i > 0 and all quasicoherent F on X. This is a converse to (vi) when n = 1.

Proof sketch(es). (i) This is obvious from the derived functor setup. If you setup with
Cech cohomology, a map of sheaves gives a map on Cech complexes, which admits
maps on cohomology.

(ii) In the derived functor setup, this is by definition, as H0(X, ·) = Γ(X, ·). For Cech
cohomology, this is precisely the sheaf axiom.

(iii) Again, if you take the derived functor approach this is implied by the LES for derived
functors. In general, if we have an exact sequence of complexes 0→ C ′• → C• → C ′′• → 0
we can take any two “rows”

0 C ′i Ci C ′′i 0

0 C ′i+1 Ci+1 C ′′i+1 0

and quotient the top row by the image, while taking the kernel of the bottom, because
these are complexes. This removes left exactness on top and right exactness on the
bottom:

C ′i/ im(C ′i−1) Ci/ im(Ci−1) C ′′i / im(C ′′i−1) 0

0 ker δ′i+1 ker δi+1 ker δ′′i+1

One observes the kernels of the vertical maps are Hi’s while the cokernels are Hi+1’s.
Applying the snake lemma gives the LES.

(iv) Using Cech cohomology, it’s straightforward to see there’s a map on Cech complexes
C•(Y, π∗F ) → C•(X,F ), by choosing covers appropriately and taking restriction
maps. For the pullback, if G is a quasicoherent sheaf on Y , there is a natural map
G → π∗π

∗G by adjointness, so by the above and (i) we have

Hi(Y,G )→ Hi(Y, π∗π
∗G )→ Hi(X,π∗G ).
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(v) When computing the natural map on Cech cohomology in (iv), observe that if ∪Ui = Y
is a finite affine cover of Y , then ∪π−1(Ui) is a finite affine cover of X. Thus the Cech
complexes are identical.

(vi) Computing via Cech cohomology, the complex stops at the n-th position, so the n-th
and higher cohomology vanish if Hi(X,F ) is independent of the cover we compute with.
In order to prove this, we actually need to first show the n = 1 case, that Hi(X,F )
vanishes for i > 0 when X is affine (for any cover).
The proof goes as follows. First assume that SpecA itself is in the cover. Then the
Cech complex for this cover (with Γ(X,F ) appended) sits in the middle of an exact
sequence with the complex forced to contain SpecA on top and the cover with SpecA
removed on the bottom. The top and bottom are identical, but shifted, and the maps
on cohomologies between them are isomorphisms, forcing Hi(X,F ) = 0 for i > 0.
In general, if X = SpecA and ∪Ui is an affine cover, we choose a distinguished open
cover of X such that each distinguished open is contained in a Ui. This allows us to
compute locally on our distinguished cover, which is in the previous case by our choices,
so the cohomology vanishes.
We can then show that adding an open set to a cover doesn’t change the Cech coho-
mology, so any two affine covers compute the same Hi’s.

(vii) This is a consequence of the fact that filtered colimits are exact in ModA and the FHHF
theorem, which states that exact functors commute with cohomology. See Exercises
1.6.H and 1.6.L.

(viii) See Dimensions of Γ (and Hi) for OPn .

(ix) We’re free to use (v) to compute π∗F on PnA instead, allowing us to use (viii) above.
We’ll also need that since F is coherent, F (m) is globally generated for some m � 0
(this has to do with (very) ampleness). What we need is that

0→ G → O(m)⊕j → F → 0

is exact for some m and j, and coherence implies that G is also coherent. By (vi) we
have vanishing of Hi(Pn,F ) for i > n. The LES of (iii) ends in

· · · → Hn(Pn,G )→ Hn(Pn,O(m))⊕j → Hn(Pn,F )→ 0.

Thus Hn(Pn,F ) is a quotient of a finitely generated A-module, and hence is finitely
generated itself. This holds for Hn(Pn,G ) as well, as we haven’t used anything about
F here. Now we see Hn−1(Pn,F ) is sandwiched between finitely generated modules
in the LES, so it too must be finitely generated. Inducting downwards, we are done.

(x) Repeat the above proof, but twist by O(N) for N sufficiently large that Hn(Pn,O(m+
N)) = 0, which is possible by (viii). Then the argument from (ix), combined with
the fact that Hi(Pn,O(m + N)) = 0 always for 0 < i < n by (viii), we find that
Hi(Pn,F (N)) = 0 for 0 < i < n.

(xi) This follows from the FHHF theorem, since the functor ⊗kK is exact on vector spaces.
This can be extended to flat base change by the same argument.

�

Property P arguments: Let P be some class of morphisms which is preserved under base change
and composition. Suppose

X Y

Z

π

τ ρ
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such that τ is in P and the diagonal of ρ, δ : Y → Y ×Z Y , is in P . Then π is in P .
As a consequence, we have
• If locally closed embeddings are in P then τ in P always implies π in P ;
• If closed embeddings are in P , then τ in P plus ρ : Y → Z separated implies π in P ;
• If quasicompact morphisms are in P , then τ in P plus ρ : Y → Z quasiseparated implies
π in P .

As a useful example, consider P to be proper morphisms, which are preserved by base
change and composition (this can be proven via e.g. the valuative criterion). If π : X → Y is
a morphism of proper k-schemes, we find π itself is proper. To see this, we take Z = Spec k
in the diagram above, with the structure morphisms τ, ρ both proper. We know closed
embeddings are proper, and proper includes separated, so by the second bullet point above,
π is proper.

Proof sketch. Define the graph of π to be the map X → X ×Z Y given by (id, π). Then
check that

X X ×Z Y

Y Y ×Z Y

(id,π)

π (π,id)

δ

is Cartesian (it’s a magic square, if that’s meaningful to you). Since property P is preserved
by base change, the top arrow, i.e. the graph morphism, has property P . The projection
X ×Z Y → Y also has property P because it is the base change of τ by ρ. Therefore the
composition X → X ×Z Y → Y , which is π itself, has property P .

The bullet points follow directly from the characterizations of the diagonal: it is always
locally closed, it’s closed — hence in P — if ρ is separated, and likewise it’s quasicompact
and in P if ρ is quasiseparated. �

Relationship(s) between line bundles, Weil divisors, Cartier divisors: Let X be a scheme.
In order for the group of Weil divisors its class group (top row of the diagram) to make sense,
we ask for X to be Noetherian and regular in codimension one. Then the solid arrows form
a commutative diagram.

DivX ClX

K(X)× CaDiv X CaCl X 0

{(L , s)} / ∼ PicX

If X is Noetherian and factorial (note this is stronger than normal, since UFDs are integrally
closed) then the dotted arrows exist and

CaCl X ' ClX ' PicX.

Proof idea. First we define the appropriate maps.

CaDiv X → DivX

is obtained by taking the closed subscheme associated to an (effective) invertible ideal sheaf
I on X. Since I is locally principal (part of the definition of a Cartier divisor) the
subscheme it cuts out is codimension one.
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In the other direction, we get

CaDiv X → {(L , s)} / ∼

by sending I 7→ (I , 1) and extending linearly.
The dotted arrow is D 7→ (O(D), 1) in one direction, and (L , s) 7→ div s in the other.

The remaining content is to show that the maps on class groups exist, and when X is locally
factorial, they are isomorphisms.

To see the maps on class groups exist, we need only check that for a rational function
t ∈ K(X)×, the associated Cartier divisor, Weil divisor, and line bundle + section all agree.

This is easy to see, because if t = f
g on an affine open neighborhood SpecA, the Cartier

divisor is the difference of the ideals (f) and (g), which is invertible by construction. The
associated line bundle is (OX , t), and the associated Weil divisor is simply div t, so these all
agree.

Finally, we comment that div : (L , s)→ DivX always makes sense. Since locally L ' O,
and s is a rational section, we can interpret the divisor accordingly, and moreover, it is always
locally principal, i.e. locally coming from a rational function. Indeed, given an isomorphism
of pairs (L , s) ∼ (L ′, s′) the image is the same Weil divisor. There exist examples of X
(necessarily not factorial) with Weil divisors which are not locally principal.

When X is factorial, O(D) is invertible for all Weil divisors D. This is seen for prime D
by covering X by X −D and an open set on which a function generating the ideal for D in
OX,p doesn’t vanish. One can then see these glue to give a line bundle on X, and that this
is inverse to div . �

Riemann–Hurwitz: Let π : X → Y be a separable morphism of projective regular curves of degree
n, with ramification divisor R. Then

deg ΩX/k = (deg π)(deg ΩY/k) + degR.

Equivalently, this can be written in terms of canonical divisors since we are working with
curves:

degKX = n · degKY + degR.

Recalling Riemann–Roch, we know degKX = 2gX − 2, giving a relation on the genera of X
and Y ,

(2gX − 2) = n(2gY − 2) + degR.

Moreover, if π is tamely ramified (trivial if char k = 0) then R may be interpreted as

R =
∑
P∈X

eP − 1,

where eP , known as the ramification index at P , is the valuation of the image of the uni-
formizer of the image of P .

Proof idea. Use (generically) separable to argue that the cotangent sequence is left exact
(see Proposition 21.7.2 or IV.2.1 in Hartshorne)

0→ π∗ΩY/k → ΩX/k → ΩX/Y → 0.

Then since degree of coherent sheaves is additive on exact sequences, we have

deg ΩX/k = deg π∗ΩY/k + deg ΩX/Y .

Since degree is well behaved under pullback (see e.g. Exercise 18.4.F), we need only interpret
the degree of ΩX/Y to get the first statement.

ΩX/Y is supported (by definition) on the ramification locus, and we can compute it exactly
by tensoring with OY,q for q in the branch locus. Given OY,q → OX,p, with uniformizers t
and s respectively, we take ep = v(im(t)), i.e. t 7→ usep for some unit u. This allows us to
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compute ΩX/Y at p and to make sense of its degree, which is
∑
p ram. ep−1 if all ramification

is tame. All that remains is to argue that this agrees with the ramification divisor R. �

Riemann–Roch: Let X be a curve and D a divisor on X. Then

χ(X,OX(D)) = degD + χ(X,OX).

Equivalently,

h0(X,OX(D))− h1(X,OX(D)) = degD + 1− pa(X).

This motivates the definition of the degree deg L for line bundles and even quasicoherent
sheaves more generally.

Assuming X is smooth over k, Serre duality relates h1(X,OX(D)) to the canonical sheaf
and identifies the arithmetic and geometric genera,

h0(X,L ) = h0(X,K ⊗L ∨) + deg L + 1− g.
This is often written with divisors more simply as

h0(D) = h0(K −D) + degD + 1− g.
Proof idea. Use the closed subscheme exact sequence

0→ OX(−P )→ OX → OP → 0.

Tensor by OX(D + P ) and use the additivity of χ to see that for any D, we have

χ(X,OX(D + P )) = χ(X,OX(D)) + h0(P,OP (D + P )).

Using the fact that OX(D + P ) is locally free, we have OP (D + P ) ' OP , so the rightmost
term above is 1. This shows the statement is true for both D+P and D so long as it’s true
for one of them. The base case of D = 0 is trivial, so by induction we are done. �

Right adjoints preserve limits (RAPL), LAPC, and why we care: Let (F,G) be an adjoint
pair between categories in which limits and colimits exist (i.e. abelian categories). We claim
that right adjoints “preserve” limits, i.e.

G(lim←−Bi) = lim←−G(Bi).

To see this, we will show that G(lim←−Bi) satisfies the universal property of limits.
First, observe that if we have a diagram with objects Bi and morphisms between them,

then applying G to objects and morphisms yields another diagram G(Bi). Since we have
assumed limits to exist in both categories, lim←−G(Bi) makes sense. Since lim←−Bi has a natural

map to the diagram, G(lim←−Bi) does as well, yielding a unique map

G(lim←−Bi)→ lim←−G(Bi).

Now suppose we have a map T to the diagram G(Bi). Applying F and using the naturality
of the adjunction, whenever Gi → Gj is a map in the diagram, we have

Mor(T,G(Bi)) Mor(F (T ), Bi)

Mor(T,G(Bj)) Mor(F (T ), Bj).

This means that F (T ) maps to the diagram Bi, and hence we have a unique F (T )→ lim←−Bi
(the content of the above is checking that things commute). Doing this again, we find that
this map is identified with a unique map T → G(lim←−Bi), which commutes with the map

from G(lim←−Bi) to the diagram G(Bi). Thus the limit is “preserved” under G!
On the other hand, suppose we start with a diagram Ai and its colimit lim−→Ai. Running

this argument the other way, we find that F (lim−→Ai) = lim−→F (Ai). Briefly, we take some T

together with a map from the diagram F (Ai) and recognize that adjointness gives us a map
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from the diagram Ai to G(T ), hence from lim−→Ai → G(T ). This we parlay back into a map

F (lim−→Ai)→ T , as desired.
Why does this matter? There are some pretty useful and prevalent limits and colimits, as

well as adjoint pairs. This fact alone can often tell us useful information. In particular, we
can use this to prove that as functors from A-modules to A-modules, · ⊗A N is right exact,
while HomA(N, ·) is left-exact. Recall that these functors are an adjoint pair, with tensor
the left adjoint and Hom the right adjoint.

To see HomA(N, ·) is left exact, we only need RAPL! If

0→M ′ →M →M ′′ → 0,

we have that M ′ ' ker(M →M ′′). Taking Homs, we find Hom(N,M ′) ' Hom(N, ker(M →
M ′′), but since a kernel is just a specific case of a limit, this means that Hom(N,M ′) '
ker(Hom(N,M),Hom(N,M ′′)), i.e.

0→ Hom(N,M ′)→ Hom(N,M)→ Hom(N,M ′′)

is exact.
On the other hand, · ⊗A N is right exact by LAPC, for essentially the same reasons. We

have the natural map M ′⊗AN →M ⊗AN , and to compute the cokernel, we recognize that
it’s a colimit, so

coker(M ′ ⊗A N →M ⊗A N) ' coker (M ′ →M)⊗A N 'M ′′ ⊗A N,

or in other words

M ′ ⊗A N →M ⊗A N →M ′′ ⊗A N → 0

is exact.

Serre’s cohomological criterion for affineness: The following are equivalent for a Noetherian
scheme.

(i) X is affine,
(ii) Hi(X,F ) = 0 for all i > 0 and all quasicoherent sheaves F on X,
(iii) H1(X,I ) = 0 for all coherent sheaves of ideals I on X.

Proof idea (Noetherian case). (i =⇒ ii) is true by Cech cohomology; see Properties of
cohomology. (ii =⇒ iii) is clear. The content is to show (iii =⇒ i).

Suppose X satisfies (iii). One shows that there exist sections f1, . . . , fr ∈ Γ(X,OX) for
which D(fi) are all affine and the fi’s generate the unit ideal in Γ(X,OX). Then X = SpecA.
This amounts to checking that the natural map X → Spec Γ(X,OX) is an affine morphism,
hence X is affine.

Let p ∈ X be a closed point (which exist for Noetherian schemes!) and Y = X − U for
an affine open U containing p. Then we have an exact sequence

0→ IY ∪{ p } → IY → κ(p)→ 0.

Interpret this as “the functions vanishing on both Y and p inject into Y , the quotient of
which is κ(p), i.e. the skyscraper sheaf on p. Taking the long exact sequence on cohomology,
using hypothesis (iii), we see that

Γ(X,IY )→ κ(p)→ 0,

so there exists a function f on X which doesn’t vanish at p. Since D(f) ⊆ U and f is also
a function on U , we have that D(f) is affine, containing p. By quasicompactness, we obtain
a finite open cover ∪D(fi) = X.

It remains to show these generate the unit ideal. Consider

0→ F → Or
X → OX → 0,
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where the map sends 1 7→ fi on the basis of Or
X . We need to show that this is surjective

on global sections, i.e. H1(X,F ) = 0. While this isn’t true a priori, as (iii) applies only to
coherent sheaves of ideals, we filter by

F ⊇ F ∩ Or−1
X ⊇ · · · ⊇ F ∩ OX .

The rightmost sheaf in the sequence is indeed a coherent sheaf of ideals, hence it has vanishing
cohomology, and each of the successive quotients may be interpreted as a coherent sheaf of
ideals, allowing us to “walk up” the filtration (much like how we did to show Xred affine
⇐⇒ X affine!). �

Serre duality: (existence) Let X be a projective scheme over k. Then a dualizing sheaf, ω, exists.
That is, for all coherent F , we have a pairing

Hom(F , ω)×Hn(X,F )→ k

with
Hom(F , ω) ' Hn(X,F )∨.

When X is Cohen–Macaulay and of equidimension n and F is locally free, we have

Hi(X,F ) ' Hn−i(X,ω ⊗F∨)∨.

(coincidence with canonical sheaf ) When X is smooth, we have that the dualizing sheaf ω
coincides with the canonical bundle/sheaf KX = det ΩX/k. In this case, Serre duality refers
to the perfect pairing

Hi(X,F )×Hn−i(X,KX ⊗F∨)→ Hn(X,KX) ' k,
which implies

hi(X,F ) = hn−i(X,KX ⊗F∨).

(curves) In the special case of X a smooth curve (n = 1), we have the oft-used formula

h1(X,OX(D)) = h0(X,OX(K −D)),

used in a common formulation of Riemann–Roch. This also allows us to that the arithmetic
genus pa = 1− χ(X,OX) agrees with the geometric genus g = h0(X,ωX),

pa = 1− χ(X,OX) = 1− h0(X,OX) + h1(X,OX) =(SD) h0(X,ωX) = g.

Sheaves which are not quasicoherent: Let X = Spec k[x](x), which has a generic point η and
a closed point corresponding to (x). The open sets consist of ∅, U = { η } , X. Consider the
sheaf of abelian groups F obtained by assigning

Γ(X,F ) = k(x), Γ(U,F ) = 0,

where the restriction map is the obvious: the zero map. This is an OX -module, because
each open set is a k[x](x)-module (we can make x act trivially on k(x)) and this agrees with
restriction.

If this were quasicoherent, we’d have Γ(X,F )x = Γ(U,F ), since U = D(x). But of
course, k(x)x = k(x) 6= 0. Therefore this isn’t quasicoherent!

A similar strategy can be used to show the pushforward of the sheaf k(x) on the closed
point at the origin (a.k.a. the skyskraper sheaf at the origin) is not quasicoherent on Spec k[x].
Here the idea is that Γ(Spec k[x], i∗k(x)) = k(x), and Γ(D(x), i∗k(x)) = 0. Thus the powers
of x must annihilate the module k(x) if this were to be quasicoherent; this is clearly seen to
be false!

Smoothness characterizations: Let X be a (necessarily) finite type k-scheme. The following
conditions are equivalent for X to be k-smooth, of (pure) dimension n.

(i) X has a cover by affine open sets Spec k[x1, . . . , xm]/(f1, . . . , fr) where the Jacobian
matrix has corank n at every point (we took this to be the definition of smooth).
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(ii) The cotangent bundle ΩX/k is locally free of rank n.
(iii) If k is a perfect field, X is regular and finite type.
Note that for (iii), we always have that smooth schemes are regular. When k is perfect, it
turns out that regularity implies smoothness.

Consider now a morphism of schemes π : X → Y . The following conditions about smooth-
ness (of some relative dimension n) are equivalent.

(i) X and Y have covers by open sets such that π locally looks like the map induced
by B → B[x1, . . . , xn+r]/(f1, . . . , fr), where the Jacobian in the first r variables is
invertible (we took this to be the definition).

(ii) π is locally finitely presented, flat of relative dimension n, and Ωπ = ΩX/Y is locally
free of rank n.

(iii) π is locally finitely presented, flat of relative dimension n, and the fibers are smooth
k-schemes of pure dimension n.

(iv) π is locally finitely presented, flat of relative dimension n, and the geometric fibers are
smooth k-schemes of pure dimension n.

Recalling that a morphism is étale if it is smooth of relative dimension zero, we find that
etaleness is equivalent to flat + loc. fin. pres. + unramified, or simply smooth and unramified.
Conditions (iii) and (iv) above imply that the fibers of etale morphisms look like a disjoint
union of copies of SpecK, where K/κ(p) is a finite separable extension (and in fact this is
enough to be etale).

Proof idea/sketch. For smoothness of a k-scheme, the idea of (i) ⇐⇒ (ii) is to show
that ΩSpec k[x1,...,xm]/(f1,...,fr)/k computes the cokernel of the Jacobian matrix (see Exercise
21.2.E). Thus if X satisfies (i), then the stalks of ΩX/k have rank n, and since constant rank
implies locally free (for finite type quasicoherent sheaves on a reduced scheme, see Exercise
13.7.K) we have (ii). Conversely, if ΩX/k is locally free, we have that after covering by affine
open sets of the form in (i), the module of differentials — which computes the cokernel of
the Jacobian — has the correct rank.

For regularity implies smoothness, first we use that X is regular implies Xk is regular.
See Exercise 12.2.O; the idea is that regular local rings are preserved under base extension,
provided the residue field is separated over k (hence the perfection hypothesis!). We then
recognize that if Xk is regular at its closed points, it must be k-smooth, as the points failing
to satisfy the Jacobian criterion are in the vanishing set of a certain determinant, hence
this set contains closed points. In fact this is an if and only if. Finally, we have that
ΩX/k ⊗k k ' ΩXk/k

by pullback of differentials; this preserves rank, so one is locally free if

and only if the other is.
For smoothness implies regular, we don’t need the perfect hypothesis on k. Smoothness

means we have X is an etale cover of Ank , which is regular. Exercise 25.2.D shows that the
preimage of a regular point under an etale map is regular. �

Useful adjoint pairs: Below are several useful left/right adjoint functor pairs.
• “–ify” (left adjoint) and “forget” (right adjoint), e.g.

– sets to groups (here “–ify” is the functor producing the free group on a set),
– presheaves to sheaves,
– Γ(X,OX)-modules to OX -modules (here “–ify” is the ·̃ functor), etc.

• Tensor ·⊗AN (left adjoint) and HomA(N, ·) (right adjoint) as functors from A-modules
to A-modules, for a fixed A-module N .
• Inverse image π−1 (left adjoint) and pushforward π∗ (right adjoint), as functors to/from

sheaves on X to sheaves on Y for a fixed map π : X → Y .
• Pullback π∗ (left adjoint) and pushforward π∗ (right adjoint) as functors to/from OX -

modules to OY -modules, for fixed map π : X → Y .
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• Extension by zero i! (left adjoint) and inverse image i−1 (right adjoint), for an open
embedding i : U ↪→ X. This handily implies that i−1 is exact in this case.

Valuative criterion for properness: Let π : X → Y be a quasiseparated finite type map of
schemes and K a valued field with valuation ring A. Then π is proper if and only if for every
such K,A with outer diagram below, there exists exactly one diagonal arrow:

SpecK X

SpecA Y.

π
∃!

If X and Y are locally Noetherian, then we need only consider discrete valuation rings A in
the diagram above.

Note that the existence of a dashed arrow implies universal closedness. Since separat-
edness is part of the definition of properness, this combined with the uniqueness from the
valuative criterion for separatedness gives properness.

Valuative criterion for separatedness: Let π : X → Y be a map of schemes and K a valued
field with valuation ring A. Then π is separated if and only if for every such K,A with outer
diagram below, there exists at most one diagonal arrow:

SpecK X

SpecA Y.

π
≤1

If π is finite type and X and Y are locally Noetherian, then we need only consider discrete
valuation rings A in the diagram above.
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3. Practice questions

The following questions have been (or might be) asked by DZB in a qualifying exam. See also
https://www.ocf.berkeley.edu/~mgsa/wiki/index.php/Algebraic_Geometry for qual questions
from Berekeley over the years.

(1) What are the injective objects of Ab?

(2) Define cohomology via injective resolutions. Give an example of an injective object. Show
that a short exact sequence gives rise to a long exact sequence in cohomology. Give examples
of cohomology groups (one vanishing, on nonvanishing).

(3) State all of the theorems and properties about cohomology.

(4) Let X be an irreducible zero dimensional scheme. Show that the cohomology of any sheaf
on X vanishes.

(5) Show that X is affine if and only if the reduction is affine.

(6) State Serre’s cohomological criterion for affineness and prove the easy part (the cohomology
of a quasicoherent sheaf on an affine scheme is trivial).

(7) Compute H1(P1,O). What about H1(A2 − 0)?

(8) Prove that Pic is isomorphic to H1(O×)

(9) State and prove Grothendieck’s vanishing theorem.

(10) State Serre duality.

(11) Prove that the cohomology of a flasque sheaf vanishes. What’s the point of flasque sheaves?

(12) Compute PicPn.

(13) Prove that a morphism of complete curves is surjective or constant.

(14) Define and give an example of an ample divisor. Compute AutPn.

(15) Define the sheaf of differentials (in all the ways). Compute its global sections on A1 and for
a field extension. Compute the global sections of Ω on Pn.

(16) State all the theorems and properties about differentials.

(17) Let X → Y be an affine morphism and F a sheaf on X. Show that the cohomology
Hi(X,F ) = Hi(Y, π∗F ) agree.

(18) What is a scheme? Give all the details. Why do we need schemes? What problems do they
solve?

(19) Prove that a map of sheaves is an isomorphism if and only if the induced morphisms on
stalks are all isomorphisms.

(20) What does (quasi)coherent mean? Give example(s) and an example of sheaf that is not
quasicoherent.

(21) Name as many adjectives that you can. What does locally of finite type mean? Reduced?
Integral? Show that integral iff irreducible and reduced.

https://www.ocf.berkeley.edu/~mgsa/wiki/index.php/Algebraic_Geometry
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(22) Show that the two definitions of locally of finite type are the same.

(23) What is a fiber product? Show that Spec of tensor is the product (in the category of schemes,
not just affine schemes!).

(24) Define the residue field of a point and give examples. What is the residue field of the generic
point of a curve in A2? Show that the fiber of a morphism is the same of the fiber product
with the inclusion of the generic point.

(25) What is a Weil divisor? What about Pic? What is CaCl Pn? Prove that these are isomor-
phic. Define div s for s a (rational) section of a line bundle. What adjectives do we need
(on X or the bundle) for this to make sense?

(26) What is a line bundle? Invertible sheaf? Show that a locally free sheaf of rank one is
invertible. Show that if every stalk of a sheaf is free, then the sheaf is locally free.

(27) Can you give an example of a surjection of sheaves which is not a surjection on global
sections?

(28) What is O(d) on Pn? What is the cohomology? State any other theorems about O(d).

(29) Prove using cohomology that a dimension 0 scheme is affine.

(30) Show that a map of sheaves is injective if and only if the induced morphism on stalks is
injective.

(31) What does it mean for a divisor to be basepoint free? Very ample? If P is a base point for
a linear system, what can we say about the divisors in the system?

(32) What is a hyperelliptic curve? What is its canonical divisor? Show that the canonical divisor
on a hyperelliptic curve is basepoint free, but not very ample.

(33) Prove for a smooth curve X that h0(X,O(D))− h0(X,O(D − P )) ≤ 1
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